Int J Stomatol ›› 2019, Vol. 46 ›› Issue (6): 675-679.doi: 10.7518/gjkq.2019097

• Reviews • Previous Articles     Next Articles

Advances of dental pulp stem cells in osteogenic microenvironment

Zhou Tingru1,2,Li Yongsheng2()   

  1. 1. School of Stomatology, Kunming Medical University, Kunming 650032, China
    2. Dept. of Oral and Maxillofacial Surgery, Yunnan First People’s Hospital, Kunming 650032, China;
  • Received:2019-02-10 Revised:2019-08-19 Online:2019-11-01 Published:2019-11-14
  • Contact: Yongsheng Li E-mail:liyongshengkw@sohu.com
  • Supported by:
    This study was supported by Yunnan Provincial Department of Science and Technology-Kunming Medical University Joint Research Fundamental Research Project(2017FE467-209)

Abstract:

Dental pulp stem cells possess high proliferation rates and multi-lineage differentiation potential. These features provide them with unique advantages and prospects in the repair of oral and maxillofacial bone tissue with bio-scaffold materials. Hence, dental pulp stem cells are optimised cells in bone tissue engineering. To enhance the regeneration of bone tissue, a suitable microenvironment is necessary for the osteogenic differentiation of dental pulp stem cells. In this review, we will examine the research progress of cytokines, scaffolds and drugs of dental pulp stem cells in an osteogenic microenvironment.

Key words: dental pulp stem cell, osteogenic differentiation, cytokine, scaffold, drug

CLC Number: 

  • Q254

TrendMD: 
[1] Ward BB, Brown SE, Krebsbach PH . Bioengineering strategies for regeneration of craniofacial bone: a review of emerging technologies[J]. Oral Dis, 2010,16(8):709-716.
[2] Yang M, Zhang H, Gangolli R . Advances of mesen-chymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering[J]. Curr Stem Cell Res Ther, 2014,9(3):150-161.
[3] Hossein-Khannazer N, Hashemi SM, Namaki S , et al. Study of the immunomodulatory effects of osteogenic differentiated human dental pulp stem cells[J]. Life Sci, 2019,216:111-118.
[4] Gronthos S, Mankani M, Brahim J , et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci USA, 2000,97(25):13625-13630.
[5] Bousnaki M, Bakopoulou A, Papadogianni D , et al. Fibro/chondrogenic differentiation of dental stem cells into chitosan/alginate scaffolds towards tem-poromandibular joint disc regeneration[J]. J Mater Sci Mater Med, 2018,29(7):97.
[6] Han YJ, Kang YH, Shivakumar SB , et al. Stem cells from cryopreserved human dental pulp tissues se-quentially differentiate into definitive endoderm and hepatocyte-like cells in vitro[J]. Int J Med Sci, 2017,14(13):1418-1429.
[7] Suchanek J, Nasry SA, Soukup T . The differentiation potential of human natal dental pulp stem cells into insulin-producing cells[J]. Folia Biol (Praha), 2017,63(4):132-138.
[8] 袁梦桐, 胡伟平, 周海燕 , 等. 体外克隆化传代培养人年轻恒牙牙髓干细胞的研究[J]. 口腔医学研究, 2010,26(5):624-627.
Yuan MT, Hu WP, Zhou HY , et al. Observation of dental pulp stem cells from human young permanent teeth of cloning subculture in vitro[J]. J Oral Sci Res, 2010,26(5):624-627.
[9] Lu X, Liu SF, Wang HH , et al. A biological study of supernumerary teeth derived dental pulp stem cells based on RNA-seq analysis[J]. Int Endod J, 2019,52(6):819-828.
[10] Tang R, Ding G . Swine dental pulp stem cells inhibit T-cell proliferation[J]. Transplant Proc, 2011,43(10):3955-3959.
[11] Kasagi S, Chen W . TGF-beta1 on osteoimmunology and the bone component cells[J]. Cell Biosci, 2013,3(1):4.
[12] Yoon SJ, Yoo Y, Nam SE , et al. The cocktail effect of BMP-2 and TGF-β1 loaded in visible light-cured glycol chitosan hydrogels for the enhancement of bone formation in a rat tibial defect model[J]. Mar Drugs, 2018,16(10). doi: 10.3390/md16100351.
[13] 杨毅 . TGF-β2对兔骨髓间充质干细胞体外成骨分化干预的实验研究[D]. 昆明: 昆明医科大学, 2014.
Yang Y . Intervention of TGF-β2 on osteogenic dif-ferentiation of rabbit bone marrow mesenchymal stem cells in vitro[D]. Kunming: Kunming Medical University, 2014.
[14] Huojia M, Muraoka N, Yoshizaki K , et al. TGF-β3 induces ectopic mineralization in fetal mouse dental pulp during tooth germ development[J]. Dev Growth Differ, 2005,47(3):141-152.
[15] Yi L, Li Z, Jiang H , et al. Gene modification of transforming growth factor β (TGF-β) and interleukin 10 (IL-10) in suppressing Mt sonicate induced os-teoclast formation and bone absorption[J]. Med Sci Monit, 2018,24:5200-5207.
[16] Aksel H, Huang GT . Combined effects of vascular endothelial growth factor and bone morphogenetic protein 2 on odonto/osteogenic differentiation of human dental pulp stem cells in vitro[J]. J Endod, 2017,43(6):930-935.
[17] Taşlı PN, Aydın S, Yalvaç ME , et al. Bmp 2 and Bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells[J]. Appl Biochem Biotechnol, 2014,172(6):3016-3025.
[18] Huang H, Dou L, Song J , et al. CBFA2T2 is required for BMP-2-induced osteogenic differentiation of mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2018,496(4):1095-1101.
[19] Tsukamoto J, Naruse K, Nagai Y , et al. Efficacy of a self-assembling peptide hydrogel, SPG-178-Gel, for bone regeneration and three-dimensional osteogenic induction of dental pulp stem cells[J]. Tissue Eng Part A, 2017,23(23/24):1394-1402.
[20] Lamplot JD, Qin J, Nan G , et al. BMP9 signaling in stem cell differentiation and osteogenesis[J]. Am J Stem Cells, 2013,2(1):1-21.
[21] Lee JS, Lee JM, Im GI . Electroporation-mediated transfer of Runx2 and Osterix genes to enhance os-teogenesis of adipose stem cells[J]. Biomaterials, 2011,32(3):760-768.
[22] Feng G, Zhang J, Feng X , et al. Runx2 modified dental pulp stem cells (DPSCs) enhance new bone formation during rapid distraction osteogenesis (DO)[J]. Differentiation, 2016,92(4):195-203.
[23] Zhan FL, Liu XY, Wang XB . The role of microRNA-143-5p in the differentiation of dental pulp stem cells into odontoblasts by targeting Runx2 via the OPG/RANKL signaling pathway[J]. J Cell Biochem, 2018,119(1):536-546.
[24] Geoffroy V, Kneissel M, Fournier B , et al. High bone resorption in adult aging transgenic mice overexpre-ssing cbfa1/runx2 in cells of the osteoblastic lineage[J]. Mol Cell Biol, 2002,22(17):6222-6233.
[25] Liu W, Toyosawa S, Furuichi T , et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures[J]. J Cell Biol, 2001,155(1):157-166.
[26] Goto N, Fujimoto K, Fujii S , et al. Role of MSX1 in osteogenic differentiation of human dental pulp stem cells[J]. Stem Cells Int, 2016,2016:8035759.
[27] Xin T, Zhang T, Li Q , et al. A novel mutation of MSX1 in oligodontia inhibits odontogenesis of dental pulp stem cells via the ERK pathway[J]. Stem Cell Res Ther, 2018,9(1):221.
[28] Riccio M, Resca E, Maraldi T , et al. Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures[J]. Eur J Histochem, 2010,54(4):e46.
[29] Kanafi MM, Ramesh A, Gupta PK , et al. Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering[J]. Int Endod J, 2014,47(7):687-697.
[30] Xia Y, Chen H, Zhang F , et al. Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells[J]. Artif Cells Nanomed Biotechnol, 2018,46(Sup1):423-433.
[31] Guo T, Li Y, Cao G , et al. Fluorapatite-modified scaffold on dental pulp stem cell mineralization[J]. J Dent Res, 2014,93(12):1290-1295.
[32] 于玲, 刘阳, 张媛媛 , 等. 体外观察三种支架材料对人乳牙牙髓干细胞生物学行为的影响[J]. 实用口腔医学杂志, 2016,32(2):235-238.
Yu L, Liu Y, Zhang YY , et al. Influence of three ty-pes of scaffolds on biological behavior of stem cells from human exfoliated deciduous teeth[J]. J Pract Stomatol, 2016,32(2):235-238.
[33] Yuan M, Zhan Y, Hu W , et al. Aspirin promotes osteogenic differentiation of human dental pulp stem cells[J]. Int J Mol Med, 2018,42(4):1967-1976.
[34] Ruan F, Zheng Q, Wang J . Mechanisms of bone ana-bolism regulated by statins[J]. Biosci Rep, 2012,32(6):511-519.
[35] Wang Y, Zheng Y, Wang Z , et al. 10 -7 M 17β-oestradiol enhances odonto/osteogenic potency of human den-tal pulp stem cells by activation of the NF-κB pathway [J]. Cell Prolif, 2013,46(6):677-684.
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[3] Yu Lerong,Li Xiangwei,Ai Hong. Research progress on the stemness maintenance of dental pulp stem cells [J]. Int J Stomatol, 2023, 50(4): 463-471.
[4] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[5] Cheng Yifan,Qin Xu,Jiang Ming,Zhu Guang-xun.. Research progress on innate lymphoid cells in periodontal diseases [J]. Int J Stomatol, 2023, 50(1): 32-36.
[6] Zhou Jianpeng,Xie Xudong,Zhao Lei,Wang Jun.. Research progress on the roles and mechanisms of T-helper 17 cells and interleukin-17 in periodontitis [J]. Int J Stomatol, 2022, 49(5): 586-592.
[7] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[8] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[9] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[10] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[11] Fu Hengyi,Wang Chenglin. Research progress on serum-free culture methods of human dental pulp stem cells and cell characterization [J]. Int J Stomatol, 2022, 49(2): 220-226.
[12] Liang Yi,Pei Xibo,Wan Qianbing. Research progress on the biomedical applications of photosensitive hydrogels [J]. Int J Stomatol, 2022, 49(1): 12-18.
[13] Zhou Yi,Zhao Yuming. Research progress on various dental pulp regeneration scaffolds [J]. Int J Stomatol, 2022, 49(1): 19-26.
[14] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
[15] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .