Int J Stomatol ›› 2024, Vol. 51 ›› Issue (1): 68-73.doi: 10.7518/gjkq.2024010

• Reviews • Previous Articles     Next Articles

Research progress of mitophagy in the onset and development of periodontal disease

Abulaiti Guliqihere(),Qin Xu,Zhu Guangxun()   

  1. Dept. of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology & School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology & Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
  • Received:2023-07-21 Revised:2023-10-02 Online:2024-01-01 Published:2024-01-10
  • Contact: Guangxun Zhu;
  • Supported by:
    National Natural Science Foundation of China(81300883);Natural Science Foundation of Hubei Province(2019CFB688)


Periodontal disease is a chronic inflammatory disease leading to the destruction of periodontal tissues caused by dental plaque biofilm. It ischaracterized by gingival inflammation and progressive destruction of alveolar bone. Mitophagy is a major mechanism that regulates cellular homeostasis by selectively eliminating dysfunctional or damaged mitochondria through autophagy, which plays a critical role in the mitochondrial quality and quantity control. Recent studies indicated that mitophagy participates in the development of periodontal diseases by inhibiting periodontal inflammation, decreasing cell apoptosis, and promoting osteogenic differentiation in periodontal ligament stem cells. Moreover, it provides a promising therapeutic strategy for the treatment of periodontal disease. Therefore, this review summarizes the progress of research on the definition of mitophagy, its molecular mechanism, and the role of mitophagy in the onset and development of periodontal disease.

Key words: periodontal disease, mitophagy, inflammation, cell apoptosis, osteogenic differentiation

CLC Number: 

  • R781.4

1 Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging[J]. Rejuvenation Res, 2005, 8(1): 3-5.
2 Yao RQ, Ren C, Xia ZF, et al. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles[J]. Autophagy, 2021, 17(2): 385-401.
3 Onishi M, Yamano K, Sato M, et al. Molecular mechanisms and physiological functions of mitophagy[J]. EMBO J, 2021, 40(3): e104705.
4 Gustafsson ÅB, Dorn GW 2nd. Evolving and expanding the roles of mitophagy as a homeostatic and pathogenic process[J]. Physiol Rev, 2019, 99(1): 853-892.
5 Liu L, Liao XD, Wu H, et al. Mitophagy and its contribution to metabolic and aging-associated disorders[J]. Antioxid Redox Signal, 2020, 32(12): 906-927.
6 Zhu CL, Yao RQ, Li LX, et al. Mechanism of mitophagy and its role in sepsis induced organ dysfunction: a review[J]. Front Cell Dev Biol, 2021, 9: 664896.
7 Liu BQ, Zhang J, Liu GJ, et al. Expression of PINK1 and Parkin in human apical periodontitis[J]. Int Endod J, 2022, 55(8): 870-881.
8 Yang CN, Kok SH, Wang HW, et al. Simvastatin alleviates bone resorption in apical periodontitis possibly by inhibition of mitophagy-related osteoblast apoptosis[J]. Int Endod J, 2019, 52(5): 676-688.
9 Kinane DF, Stathopoulou PG, Papapanou PN. Perio-dontal diseases[J]. Nat Rev Dis Primers, 2017, 3: 17038.
10 Yoo SM, Jung YK. A molecular approach to mito-phagy and mitochondrial dynamics[J]. Mol Cells, 2018, 41(1): 18-26.
11 Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in Mitochondrial maintenance[J]. Curr Biol, 2018, 28(4): R170-R185.
12 Jin SM, Lazarou M, Wang CX, et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL[J]. J Cell Biol, 2010, 191(5): 933-942.
13 Koyano F, Okatsu K, Kosako H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin[J]. Nature, 2014, 510(7503): 162-166.
14 Randow F, Youle RJ. Self and nonself: how auto-phagy targets mitochondria and bacteria[J]. Cell Host Microbe, 2014, 15(4): 403-411.
15 Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy[J]. Nature, 2015, 524(7565): 309-314.
16 Terešak P, Lapao A, Subic N, et al. Regulation of PRKN-independent mitophagy[J]. Autophagy, 2022, 18(1): 24-39.
17 Kuang Y, Ma KL, Zhou CQ, et al. Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy[J]. Autophagy, 2016, 12(12): 2363-2373.
18 Chen G, Han Z, Feng D, et al. A regulatory signa-ling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy[J]. Mol Cell, 2014, 54(3): 362-377.
19 Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control[J]. Redox Biol, 2015, 4: 6-13.
20 Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death Differ, 2013, 20(1): 31-42.
21 Otsu K, Murakawa T, Yamaguchi O. BCL2L13 is a mammalian homolog of the yeast mitophagy receptor Atg32[J]. Autophagy, 2015, 11(10): 1932-1933.
22 Shirane-Kitsuji M, Nakayama KI. Mitochondria: FKBP38 and mitochondrial degradation[J]. Int J Biochem Cell Biol, 2014, 51: 19-22.
23 Curtis MA, Diaz PI, Van Dyke TE. The role of the microbiota in periodontal disease[J]. Periodontol 2000, 2020, 83(1): 14-25.
24 Jiang K, Li JW, Jiang LS, et al. PINK1-mediated mitophagy reduced inflammatory responses to Porphyromonas gingivalis in macrophages[J]. Oral Dis, 2022. doi:10.1111/odi.14286 .
doi: 10.1111/odi.14286
25 Li XC, Zhao Y, Peng HR, et al. Robust intervention for oxidative stress-induced injury in periodontitis via controllably released nanoparticles that regulate the ROS-PINK1-Parkin pathway[J]. Front Bioeng Biotechnol, 2022, 10: 1081977.
26 Zhai QM, Chen X, Fei DD, et al. Nanorepairers rescue inflammation-induced mitochondrial dysfunction in mesenchymal stem cells[J]. Adv Sci (Weinh), 2022, 9(4): e2103839.
27 Schofield JH, Schafer ZT. Mitochondrial reactive oxygen species and mitophagy: a complex and nuan-ced relationship[J]. Antioxid Redox Signal, 2021, 34(7): 517-530.
28 刘瑜, 李树锦, 张森林, 等. 牙龈卟啉单胞菌脂多糖促进牙龈成纤维细胞的自噬[J]. 细胞与分子免疫学杂志, 2017, 33(3): 315-319.
Liu Y, Li SJ, Zhang SL, et al. Lipopolysaccharide of Porphyromonas gingivalis promotes the autophagy of human gingival fibroblasts[J]. Chin J Cell Mol Immunol, 2017, 33(3): 315-319.
29 范智博, 金珂, 李胜鸿, 等. 饥饿条件下活性氧通过PINK1/Parkin通路调控人牙周膜细胞的线粒体自噬[J]. 华西口腔医学杂志, 2022, 40(6): 645-653.
Fan ZB, Jin K, Li SH, et al. Regulation of reactive oxygen species on the mitophagy of human perio-dontal ligament cells through the PINK1/Parkin pathway under starvation[J]. West China J Stomatol, 2022, 40(6): 645-653.
30 Hasturk H. Inflammation and periodontal regeneration[J]. Dent Clin North Am, 2022, 66(1): 39-51.
31 Fei DD, Xia YM, Zhai QM, et al. Exosomes regulate interclonal communication on osteogenic differen-tiation among heterogeneous osteogenic single-cell clones through PINK1/parkin-mediated mitophagy[J]. Front Cell Dev Biol, 2021, 9: 687258.
32 Lin L, Li S, Hu S, et al. UCHL1 impairs periodontal ligament stem cell osteogenesis in periodontitis[J]. J Dent Res, 2023, 102(1): 61-71.
33 Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death[J]. Biochem Biophys Res Commun, 2017, 482(3): 426-431.
34 Tunalı M, Ataoğlu T, Celik I. Apoptosis: an under-lying factor for accelerated periodontal disease associated with diabetes in rats[J]. Clin Oral Investig, 2014, 18(7): 1825-1833.
35 Zhu CH, Zhao Y, Pei DD, et al. PINK1 mediated mitophagy attenuates early apoptosis of gingival epithelial cells induced by high glucose[J]. BMC Oral Health, 2022, 22(1): 144.
36 Wang H, Jiang TY, Li W, et al. Resveratrol attenua-tes oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease[J]. Toxicol Lett, 2018, 282: 100-108.
37 Liu XH, Lu JD, Liu SQ, et al. Huangqi-Danshen decoction alleviates diabetic nephropathy in DB/DB mice by inhibiting PINK1/Parkin-mediated mitophagy[J]. Am J Transl Res, 2020, 12(3): 989-998.
38 Abudureyimu M, Yu WJ, Cao RY, et al. Berberine promotes cardiac function by upregulating PINK1/parkin-mediated mitophagy in heart failure[J]. Front Physiol, 2020, 11: 565751.
[1] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[2] Yang Xiaoyu,Yuan Quan.. Research progress on the role of extravascular fibrinogen deposition in mucosal diseases [J]. Int J Stomatol, 2023, 50(4): 457-462.
[3] Huang Dingming, Zhang Lan, Man Yi. Biologic bases of nature tooth-related maxillary sinus floor elevation [J]. Int J Stomatol, 2023, 50(3): 251-262.
[4] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[5] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[6] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[7] Cheng Yifan,Qin Xu,Jiang Ming,Zhu Guang-xun.. Research progress on innate lymphoid cells in periodontal diseases [J]. Int J Stomatol, 2023, 50(1): 32-36.
[8] Li Weiguang,Wu Yafei,Guo Shujuan.. Research progress on the use of inorganic nanoparticles in the diagnosis and treatment of periodontal disease [J]. Int J Stomatol, 2022, 49(6): 724-730.
[9] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[10] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[11] Li Guiping,Qin Xu,Zhu Guangxun.. Research progress on adenosine monophosphate-activated protein kinase in periodontal disease [J]. Int J Stomatol, 2022, 49(3): 343-348.
[12] Jiang Duan,Shen Daonan,Zhao Lei,Wu Yafei. Research progress on the relationship between new anti-inflammatory factor developmental endothelial locus-1 and periodontitis [J]. Int J Stomatol, 2022, 49(2): 244-248.
[13] Zhou Yi,Zhao Yuming. Research progress on various dental pulp regeneration scaffolds [J]. Int J Stomatol, 2022, 49(1): 19-26.
[14] Mu Xinyue,Liu Shutai. Research progress on motivational interviewing in the management of patients with periodontal disease [J]. Int J Stomatol, 2022, 49(1): 94-99.
[15] Bai Haoliang,Yang He,Zhao Lei. Research progress on periodontal disease risk assessment and prognosis judgment tools [J]. Int J Stomatol, 2021, 48(6): 696-702.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .