Int J Stomatol ›› 2023, Vol. 50 ›› Issue (5): 587-593.doi: 10.7518/gjkq.2023087
• Reviews • Previous Articles Next Articles
Gong Meiling(),Cheng Xingqun,Wu Hongkun.()
CLC Number:
1 | 刘疏影, 陈彪. 帕金森病流行现状[J]. 中国现代神经疾病杂志, 2016, 16(2): 98-101. |
Liu SY, Chen P. Epidemiology of Parkinson’s di-sease[J]. Chin J Contemp Neurol Neurosurg, 2016, 16(2): 98-101. | |
2 | Uppoor AS, Lohi HS, Nayak D. Periodontitis and Alzheimer’s disease: oral systemic link still on the rise[J]. Gerodontology, 2013, 30(3): 239-242. |
3 | Kamer AR, Craig RG, Dasanayake AP, et al. Inflammation and Alzheimer’s disease: possible role of periodontal diseases[J]. Alzheimers Dement, 2008, 4(4): 242-250. |
4 | Kaur T, Uppoor A, Naik D. Parkinson’s disease and periodontitis-the missing link? A review[J]. Gero-dontology, 2016, 33(4): 434-438. |
5 | Hashioka S, Inoue K, Miyaoka T, et al. The possible causal link of periodontitis to neuropsychiatric disorders: more than psychosocial mechanisms[J]. Int J Mol Sci, 2019, 20(15): 3723. |
6 | Pradeep AR, Singh SP, Martande SS, et al. Clinical evaluation of the periodontal health condition and oral health awareness in Parkinson’s disease patients[J]. Gerodontology, 2015, 32(2): 100-106. |
7 | Cicciù M, Risitano G, Lo Giudice G, et al. Periodontal health and caries prevalence evaluation in patients affected by Parkinson’s disease[J]. Parkinsons Dis, 2012, 2012: 541908. |
8 | Lyra P, Machado V, Proença L, et al. Parkinson’s di-sease, periodontitis and patient-related outcomes: a cross-sectional study[J]. Medicina (Kaunas), 2020, 56(8): 383. |
9 | García-de-la-Fuente AM, Fernández-Jiménez A, Lafuente-Ibáñez-de-Mendoza I, et al. Periodontal heal-th in a population with Parkinson’s disease in Spain: a cross-sectional study[J]. Med Oral Patol Oral Cir Bucal, 2023, 28(1): e32-e40. |
10 | John T, Vasanthy B, Madhavanpillai B, et al. Does Parkinsonism affect periodontal health? A cross-sectional study in a tertiary hospital[J]. J Indian Soc Periodontol, 2021, 25(6): 538-543. |
11 | Fleury V, Zekeridou A, Lazarevic V, et al. Oral dysbiosis and inflammation in Parkinson’s disease[J]. J Parkinsons Dis, 2021, 11(2): 619-631. |
12 | Martimbianco ALC, Prosdocimi FC, Anauate-Netto C, et al. Evidence-based recommendations for the oral health of patients with Parkinson’s disease[J]. Neurol Ther, 2021, 10(1): 391-400. |
13 | Nicholson JS, Landry KS. Oral dysbiosis and neurodegenerative diseases: correlations and potential causations[J]. Microorganisms, 2022, 10(7): 1326. |
14 | Rozas NS, Tribble GD, Jeter CB. Oral factors that impact the oral microbiota in Parkinson’s disease[J]. Microorganisms, 2021, 9(8): 1616. |
15 | Chen CK, Wu YT, Chang YC. Periodontal inflammatory disease is associated with the risk of Parkinson’s disease: a population-based retrospective mat-ched-cohort study[J]. PeerJ, 2017, 5: e3647. |
16 | Hsu YC, Chang CW, Lee HL, et al. Association between history of dental amalgam fillings and risk of Parkinson’s disease: a population-based retrospective cohort study in Taiwan[J]. PLoS One, 2016, 11(12): e0166552. |
17 | Liu TC, Sheu JJ, Lin HC, et al. Increased risk of Parkinsonism following chronic periodontitis: a retrospective cohort study[J]. Mov Disord, 2013, 28(9): 1307-1308. |
18 | Jeong E, Park JB, Park YG. Evaluation of the association between periodontitis and risk of Parkinson’s disease: a nationwide retrospective cohort study[J]. Sci Rep, 2021, 11(1): 16594. |
19 | Liu ZW, Roosaar A, Axéll T, et al. Tobacco use, oral health, and risk of Parkinson’s disease[J]. Am J Epidemiol, 2017, 185(7): 538-545. |
20 | Kannarkat GT, Boss JM, Tansey MG. The role of innate and adaptive immunity in Parkinson’s disease[J]. J Parkinsons Dis, 2013, 3(4): 493-514. |
21 | Ebersole JL, Cappelli D. Acute-phase reactants in infections and inflammatory diseases[J]. Periodontol 2000, 2000, 23(1): 19-49. |
22 | D’Mello C, Swain MG. Immune-to-brain communication pathways in inflammation-associated sickness and depression[J]. Curr Top Behav Neurosci, 2017, 31: 73-94. |
23 | Herrera AJ, Tomás-Camardiel M, Venero JL, et al. Inflammatory process as a determinant factor for the degeneration of substantia nigra dopaminergic neurons[J]. J Neural Transm (Vienna), 2005, 112(1): 111-119. |
24 | Herrera AJ, Castaño A, Venero JL, et al. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system[J]. Neurobiol Dis, 2000, 7(4): 429-447. |
25 | Alvarenga MOP, Frazão DR, de Matos IG, et al. Is there any association between neurodegenerative diseases and periodontitis? A systematic review[J]. Front Aging Neurosci, 2021, 13: 651437. |
26 | Ledwon B, Miskiewicz A, Grabowska E, et al. The relationship between periodontal disease and motor impairment in the course of Parkinson’s disease[J]. Postepy Hig Med Dosw, 2020, 74: 340-347. |
27 | Kamer AR, Pirraglia E, Tsui W, et al. Periodontal disease associates with higher brain amyloid load in normal elderly[J]. Neurobiol Aging, 2015, 36(2): 627-633. |
28 | Perry VH. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease[J]. Brain Behav Immun, 2004, 18(5): 407-413. |
29 | Frister A, Schmidt C, Schneble N, et al. Phosphoinositide 3-kinase γ affects LPS-induced disturbance of blood-brain barrier via lipid kinase-independent control of cAMP in microglial cells[J]. Neuromolecular Med, 2014, 16(4): 704-713. |
30 | Olsen I, Singhrao SK. Can oral infection be a risk factor for Alzheimer’s disease[J]. J Oral Microbiol, 2015, 7: 29143. |
31 | Gao HM, Jiang J, Wilson B, et al. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease[J]. J Neurochem, 2002, 81(6): 1285-1297. |
32 | Kim WG, Mohney RP, Wilson B, et al. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of micro-glia[J]. J Neurosci, 2000, 20(16): 6309-6316. |
33 | Olsen I, Kell DB, Pretorius E. Is Porphyromonas gingivalis involved in Parkinson’s disease[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(11): 2013-2018. |
34 | Cunningham C, Wilcockson DC, Campion S, et al. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration[J]. J Neurosci, 2005, 25(40): 9275-9284. |
35 | McColl BW, Rothwell NJ, Allan SM. Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms[J]. J Neurosci, 2007, 27(16): 4403-4412. |
36 | Liu Y, Wu Z, Nakanishi Y, et al. Infection of microglia with Porphyromonas gingivalis promotes cell migration and an inflammatory response through the gingipain-mediated activation of protease-activated receptor-2 in mice[J]. Sci Rep, 2017, 7(1): 11759. |
37 | Wu Z, Ni JJ, Liu YC, et al. Cathepsin B plays a critical role in inducing Alzheimer’s disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice[J]. Brain Behav Immun, 2017, 65: 350-361. |
38 | Liu YC, Wu Z, Zhang XW, et al. Leptomeningeal cells transduce peripheral macrophages inflammatory signal to microglia in reponse to Porphyromonas gingivalis LPS[J]. Mediators Inflamm, 2013, 2013: 407562. |
39 | Wu Z, Zhang J, Nakanishi H. Leptomeningeal cells activate microglia and astrocytes to induce IL-10 production by releasing pro-inflammatory cytokines during systemic inflammation[J]. J Neuroimmunol, 2005, 167(1/2): 90-98. |
40 | Lee H, James WS, Cowley SA. LRRK2 in periphe-ral and central nervous system innate immunity: its link to Parkinson’s disease[J]. Biochem Soc Trans, 2017, 45(1): 131-139. |
41 | Kozina E, Sadasivan S, Jiao Y, et al. Mutant LRRK2 mediates peripheral and central immune responses leading to neurodegeneration in vivo [J]. Brain, 2018, 141(6): 1753-1769. |
42 | Feng YK, Wu QL, Peng YW, et al. Oral P. gingivalis impairs gut permeability and mediates immune responses associated with neurodegeneration in LRRK2 R1441G mice[J]. J Neuroinflammation, 2020, 17(1): 347. |
43 | Kishimoto Y, Zhu WD, Hosoda W, et al. Chronic mild gut inflammation accelerates brain neuropathology and motor dysfunction in α-synuclein mutant mice[J]. Neuromolecular Med, 2019, 21(3): 239-249. |
44 | Kelly LP, Carvey PM, Keshavarzian A, et al. Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease[J]. Mov Disord, 2014, 29(8): 999-1009. |
45 | Houser MC, Tansey MG. The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis[J]. NPJ Parkinsons Dis, 2017, 3: 3. |
46 | Daher JP. Interaction of LRRK2 and α-synuclein in Parkinson’s disease[J]. Adv Neurobiol, 2017, 14: 209-226. |
47 | Sun J, Zhang SS, Zhang X, et al. IL-17A is implica-ted in lipopolysaccharide-induced neuroinflammation and cognitive impairment in aged rats via microglial activation[J]. J Neuroinflammation, 2015, 12: 165. |
48 | Waisman A, Hauptmann J, Regen T. The role of IL-17 in CNS diseases[J]. Acta Neuropathol, 2015, 129(5): 625-637. |
49 | Liu Z, Qiu AW, Huang Y, et al. IL-17A exacerbates neuroinflammation and neurodegeneration by activating microglia in rodent models of Parkinson’s di-sease[J]. Brain Behav Immun, 2019, 81: 630-645. |
50 | Kebir H, Kreymborg K, Ifergan I, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation[J]. Nat Med, 2007, 13(10): 1173-1175. |
51 | Sharon G, Sampson TR, Geschwind DH, et al. The central nervous system and the gut microbiome[J]. Cell, 2016, 167(4): 915-932. |
52 | Braak H, Sastre M, Bohl JR, et al. Parkinson’s di-sease: lesions in dorsal horn layer Ⅰ, involvement of parasympathetic and sympathetic pre- and postganglionic neurons[J]. Acta Neuropathol, 2007, 113(4): 421-429. |
53 | Auffret M, Meuric V, Boyer E, et al. Oral health disorders in Parkinson’s disease: more than meets the eye[J]. J Parkinsons Dis, 2021, 11(4): 1507-1535. |
54 | Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities[J]. Nat Rev Immunol, 2021, 21(7): 426-440. |
55 | Kitamoto S, Nagao-Kitamoto H, Jiao Y, et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis[J]. Cell, 2020, 182(2): 447-462.e14. |
56 | Li DC, Ren TZ, Li H, et al. Porphyromonas gingivalis: a key role in Parkinson’s disease with cognitive impairment[J]. Front Neurol, 2022, 13: 945523. |
57 | Chen CK, Huang JY, Wu YT, et al. Dental scaling decreases the risk of Parkinson’s disease: a nationwide population-based nested case-control study[J]. Int J Environ Res Public Health, 2018, 15(8): 1587. |
58 | Diederich NJ, Moore CG, Leurgans SE, et al. Parkinson disease with old-age onset: a comparative study with subjects with middle-age onset[J]. Arch Neurol, 2003, 60(4): 529-533. |
59 | Wong DF, Wagner HN Jr, Dannals RF, et al. Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain[J]. Science, 1984, 226(4681): 1393-1396. |