Int J Stomatol ›› 2023, Vol. 50 ›› Issue (6): 661-668.doi: 10.7518/gjkq.2023082
• Original Articles • Previous Articles Next Articles
Luo Xiaojie1,2(),Wang Dexu1,2,Chen Xiaotao2()
CLC Number:
1 | Kassebaum NJ, Bernabé E, Dahiya M, et al. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression[J]. J Dent Res, 2014, 93(11): 1045-1053. |
2 | Pihlstrom BL, Michalowicz BS, Johnson NW. Pe-riodontal diseases[J]. Lancet, 2005, 366(9499): 1809-1820. |
3 | Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. |
4 | Sun YT, Chen P, Zhai BT, et al. The emerging role of ferroptosis in inflammation[J]. Biomed Pharmacother, 2020, 127: 110108. |
5 | Papapanou PN, Behle JH, Kebschull M, et al. Subgingival bacterial colonization profiles correlate with gingival tissue gene expression[J]. BMC Microbiol, 2009, 9: 221. |
6 | Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequen-cing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. |
7 | Cai W, Li H, Zhang Y, et al. Identification of key biomarkers and immune infiltration in the synovial tissue of osteoarthritis by bioinformatics analysis[J]. PeerJ, 2020, 8: e8390. |
8 | Sczepanik FSC, Grossi ML, Casati M, et al. Perio-dontitis is an inflammatory disease of oxidative stress: we should treat it that way[J]. Periodontol 2000, 2020, 84(1): 45-68. |
9 | Chen MM, Cai WJ, Zhao SF, et al. Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: a syste-matic review and meta-analysis[J]. J Clin Periodontol, 2019, 46(6): 608-622. |
10 | Wang Y, Andrukhov O, Rausch-Fan X. Oxidative stress and antioxidant system in periodontitis[J]. Front Physiol, 2017, 8: 910. |
11 | Cao JY, Dixon SJ. Mechanisms of ferroptosis[J]. Cell Mol Life Sci, 2016, 73(11/12): 2195-2209. |
12 | Koppula P, Zhuang L, Gan BY. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620. |
13 | Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation[J]. Trends Cell Biol, 2016, 26(3): 165-176. |
14 | 李春燕, 孙传政, 宋鑫. 肿瘤细胞死亡的一种新形式: 铁死亡[J]. 中国生物化学与分子生物学报, 2019, 35(11): 1208-1214. |
Li CY, Sun CZ, Song X. A new form of tumor cell death: ferroptosis[J]. Chin J Biochem Mol Biol, 2019, 35(11): 1208-1214. | |
15 | Gluschko A, Farid A, Herb M, et al. Macrophages target Listeria monocytogenes by two discrete non-canonical autophagy pathways[J]. Autophagy, 2022, 18(5): 1090-1107. |
16 | Chen HY, Sun Q, Zhang CG, et al. Identification and validation of CYBB, CD86, and C3AR1 as the key genes related to macrophage infiltration of gastric cancer[J]. Front Mol Biosci, 2021, 8: 756085. |
17 | Galaris D, Barbouti A, Pantopoulos K. Iron homeostasis and oxidative stress: an intimate relationship[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(12): 118535. |
18 | Brown CW, Amante JJ, Chhoy P, et al. Prominin2 drives ferroptosis resistance by stimulating iron export[J]. Dev Cell, 2019, 51(5): 575-586.e4. |
19 | Kuang YB, Wang Q. Iron and lung cancer[J]. Cancer Lett, 2019, 464: 56-61. |
20 | Hou W, Xie YC, Song XX, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12(8): 1425-1428. |
21 | Guo W, Zhao YH, Li HX, et al. NCOA4-mediated ferritinophagy promoted inflammatory responses in periodontitis[J]. J Periodontal Res, 2021, 56(3): 523-534. |
22 | Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer[J]. Nat Rev Cancer, 2017, 17(9): 528-542. |
23 | Ni S, Yuan Y, Qian Z, et al. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis[J]. Free Radic Biol Med, 2021, 169: 271-282. |
24 | Jin CY, Zhang P, Zhang M, et al. Inhibition of SLC7A11 by sulfasalazine enhances osteogenic differentiation of mesenchymal stem cells by modula-ting BMP2/4 expression and suppresses bone loss in ovariectomized mice[J]. J Bone Miner Res, 2017, 32(3): 508-521. |
25 | Han B, Geng H, Liu L, et al. GSH attenuates RANKL-induced osteoclast formation in vitro and LPS-induced bone loss in vivo [J]. Biomed Pharmacother, 2020, 128: 110305. |
26 | Huynh H, Wan YH. mTORC1 impedes osteoclast differentiation via calcineurin and NFATc1 [J]. Commun Biol, 2018, 1: 29. |
27 | Fujita H, Ochi M, Ono M, et al. Glutathione accele-rates osteoclast differentiation and inflammatory bone destruction[J]. Free Radic Res, 2019, 53(2): 226-236. |
28 | Lee DE, Kim JH, Choi SH, et al. Periodontitis mainly increases osteoclast formation via enhancing the differentiation of quiescent osteoclast precursors into osteoclasts[J]. J Periodontal Res, 2015, 50(2): 256-264. |
29 | Agidigbi TS, Kang IS, Kim C. Inhibition of MEK/ERK upregulates GSH production and increases RANKL-induced osteoclast differentiation in RAW 264.7 cells[J]. Free Radic Res, 2020, 54(11/12): 894-905. |
30 | Ledesma-Colunga MG, Weidner H, Vujic Spasic M, et al. Shaping the bone through iron and iron-related proteins[J]. Semin Hematol, 2021, 58(3): 188-200. |