Int J Stomatol ›› 2022, Vol. 49 ›› Issue (5): 521-528.doi: 10.7518/gjkq.2022080

• Original Articles • Previous Articles     Next Articles

Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages

Huang Weikun(),Xu Qiuyan,Zhou Ting.()   

  1. Dept. of Stomatology, Guizhou Provincial People ’ s Hospital, Guiyang 550002, China
  • Received:2022-01-10 Revised:2022-05-18 Online:2022-09-01 Published:2022-09-16
  • Contact: Ting. Zhou;
  • Supported by:
    National Natural Science Foundation of China(81760198);Science and Technology Foundation of the Traditional Chinese Medicine of Guizhou Province(QZYY-2019-011);Youth Fund of Guizhou Provincial People’s Hospital(GZSYQN[2018]08);Science and Technology Foundation of the Health Commission of Guizhou Province(gzwjkj2018-1-054);Cultivation Fund of National Natural Science Foundation of Guizhou Provincial People’s Hospital(QKHPTRC[2018]5764-06)


Objective We aimed to explore the role and mechanisms of baicalin in oxidative injury promoted by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharides (LPSs) on macrophages. Methods Macrophages derived from human monocytic-leukemia cells (THP-1) were stimulated with LPSs with or without baicalin (5 and 10 μmol·L-1), and then cell injury, reactive oxygen species (ROS) level, malondialdehyde (MDA), superoxide dismutase (SOD) activities, and apoptosis were measured through cell counting kit-8 (CCK8), lactate dehydrogenase (LDH), 2,7-dichlorodihydrofluorescein diacetate, MDA, and SOD assays; enzyme-linked immunosorbent assay; and flow cytometry. The expression level of nuclear factor erythroid 2-related factor 2 (Nrf2) was determined by Wes-tern Blot (WB). Results LPS inhibited cell proliferation (P<0.000 1), induced LDH leakage (P<0.000 1), increased ROS level and MDA activity (P<0.000 1), decreased SOD activity (P<0.000 1), and increased apoptotic rate (P<0.000 1). Baicalin co-treatment attenuated damage induced by LPSs (P<0.000 1). Meanwhile, the cytoplasmic protein level of Nrf2 was up-regulated by 10 μmol·L-1 baicalin co-treatment (P<0.01). Conclusion Baicalin attenuated LPS-promoted oxidative injury on macrophages by up-regulating Nrf2.

Key words: baicalin, periodontitis, oxidative injury, macrophage

CLC Number: 

  • Q 26


Fig 1

The effects of baicalin on cell injury of LPS on macrophages"

Fig 2

The effects of baicalin on oxidative stress of LPS on macrophages"

Fig 3

The effects of baicalin on apoptosis of LPS on macrophages"

Fig 4

The mechanisms underlying baicalin attenuating LPS-induced oxidative injury of macrophages"

1 Slots J. Primer on etiology and treatment of progressive/severe periodontitis: a systemic health perspective[J]. Periodontol 2000, 2020, 83(1): 272-276.
2 Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015, 15(1): 30-44.
3 Graziani F, Karapetsa D, Alonso B, et al. Nonsurgical and surgical treatment of periodontitis: how many options for one disease[J]. Periodontol 2000, 2017, 75(1): 152-188.
4 H R R, Dhamecha D, Jagwani S, et al. Local drug delivery systems in the management of periodontitis: a scientific review[J]. J Control Release, 2019, 307: 393-409.
5 Eid Abdelmagyd HA, Ram Shetty DS, Musa Mus-leh Al-Ahmari DM. Herbal medicine as adjunct in periodontal therapies-a review of clinical trials in past decade[J]. J Oral Biol Craniofac Res, 2019, 9(3): 212-217.
6 徐倩容, 杨里娜, 艾黄萍, 等. 玄菊解毒合剂含漱液辅助治疗慢性牙周炎的临床观察[J]. 实用口腔医学杂志, 2020, 36(2): 326-329.
Xu QR, Yang LN, Ai HP, et al. Clinical observation of Xuanjujiedu mouthwash in the treatment of pe-riodontitis[J]. J Pract Stomatol, 2020, 36(2): 326-329.
7 王杨洋, 赵婵媛, 张海龙, 等. 益气升阳固齿汤联合奥硝唑治疗慢性牙周炎疗效以及对骨保护素水平的影响[J]. 中华中医药学刊, 2018, 36(8): 2012-2015.
Wang YY, Zhao CY, Zhang HL, et al. Effect of Yiqi Shengyang Guchi decoction combined with ornidazole in treatment of chronic periodontitis and the effect on levels of bone protection[J]. Chin Arch Tradit Chin Med, 2018, 36(8): 2012-2015.
8 刘宇, 高玲. 黄芩苷对慢性心肌衰竭大鼠心肌细胞凋亡及相关信号通路表达的影响[J]. 医学研究生学报, 2020, 33(6): 577-581.
Liu Y, Gao L. Effect of Baicalin on myocardial cell apoptosis and Akt/AMPK/mTOR signal pathway expression in chronic myocardial failure rats[J]. J Med Postgrad, 2020, 33(6): 577-581.
9 肖意川, 张许, 柯培雄, 等. 黄芩苷在心血管疾病中的药理作用研究新进展[J]. 广东医学, 2018, 39(24): 3587-3590.
Xiao YC, Zhang X, Ke PX, et al. Research progress on pharmacologic actions of baicalin in cardiovascular disease[J]. Guangdong Med J, 2018, 39(24): 3587-3590.
10 解立科, 田小亭, 郭小珍, 等. 黄芩素与黄芩苷微生物和肝脏代谢异同研究[J]. 中成药, 2020, 42(7): 1830-1836.
Xie LK, Tian XT, Guo XZ, et al. Differences and similarities in microbial and liver metabolisms between baicalein and baicalin[J]. Chin Tradit Pat Med, 2020, 42(7): 1830-1836.
11 白庆云, 陶思敏, 田锦鸿, 等. 黄芩对肝病的防治作用及机制研究进展[J]. 中国中药杂志, 2020, 45(12): 2808-2816.
Bai QY, Tao SM, Tian JH, et al. Progress of research on effect and mechanism of Scutellariae Radix on preventing liver diseases[J]. China J Chin Mater Med, 2020, 45(12): 2808-2816.
12 周毅, 陈珍, 刘杨若萱, 等. EGCG和黄芩苷协同mTOR依赖性抑制小鼠牙周炎巨噬细胞M1向极化[J]. 口腔医学研究, 2021, 37(7): 622-627.
Zhou Y, Chen Z, Liu YRX, et al. EGCG and bai-calin inhibit M1 polarization of macrophages in mice periodontitis through mTOR Synergistically[J]. J Oral Sci Res, 2021, 37(7): 622-627.
13 Chen MM, Cai WJ, Zhao SF, et al. Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: a syste-matic review and meta-analysis[J]. J Clin Periodontol, 2019, 46(6): 608-622.
14 Tóthová L, Celec P. Oxidative stress and antioxidants in the diagnosis and therapy of periodontitis[J]. Front Physiol, 2017, 8: 1055.
15 沈妍欣, 郭淑娟, 吴亚菲. 慢性牙周炎的氧化应激及抗氧化治疗研究进展[J]. 中华口腔医学杂志, 2016, 51(7): 442-446.
Shen YX, Guo SJ, Wu YF. Oxidative stress and an-tioxitant therapy of chronic periodontitis[J]. Chin J Stomatol, 2016, 51(7): 442-446.
16 温静瑜, 和红兵, 任晓斌, 等. 抗氧化剂在牙周炎治疗中的应用研究[J]. 口腔医学研究, 2018, 34(1): 97-99.
Wen JY, He HB, Ren XB, et al. Progress of application and research on antioxidants and periodontitis[J]. J Oral Sci Res, 2018, 34(1): 97-99.
17 Zhou T, Huang WK, Xu QY, et al. Nec-1 attenuates inflammation and cytotoxicity induced by high glucose on THP-1 derived macrophages through RIP1 [J]. Arch Oral Biol, 2020, 118: 104858.
18 Liu SS, Du J, Li DF, et al. Oxidative stress induced pyroptosis leads to osteogenic dysfunction of MG63 cells[J]. J Mol Histol, 2020, 51(3): 221-232.
19 Zhao B, Zhang WJ, Xiong YX, et al. Effects of rutin on the oxidative stress, proliferation and osteogenic differentiation of periodontal ligament stem cells in LPS-induced inflammatory environment and the underlying mechanism[J]. J Mol Histol, 2020, 51(2): 161-171.
20 Liu H, Dong YH, Gao YT, et al. Hesperetin suppresses RANKL-induced osteoclastogenesis and ame-liorates lipopolysaccharide-induced bone loss[J]. J Cell Physiol, 2019, 234(7): 11009-11022.
21 季小添, 李海珊, 李伟荣, 等. 基于黄芩苷药理研究进展探讨其对出血性脑损伤可能的保护作用及机制[J]. 中药新药与临床药理, 2020, 31(12): 1508-1515.
Ji XT, Li HS, Li WR, et al. Exploring possible protective effect and mechanism of hemorrhagic brain injury based on the pharmacological research pro-gress of baicalin[J]. Tradit Chin Drug Res Clin Pharmacol, 2020, 31(12): 1508-1515.
22 吴艳荣, 刘光伟, 刘全忠, 等. 黄芩苷通过上调miR-190表达缓解缺氧缺糖对神经细胞损伤的研究[J]. 中草药, 2021, 52(10): 3009-3017.
Wu YR, Liu GW, Liu QZ, et al. Baicalin alleviates damage of nerve cells caused by hypoxia and hypoglycemia by up-regulating expression of miR-190[J]. Chin Tradit Herb Drugs, 2021, 52(10): 3009-3017.
23 Ma LY, Wu F, Shao QQ, et al. Baicalin alleviates o-xidative stress and inflammation in diabetic nephro-pathy via Nrf2 and MAPK signaling pathway[J]. Drug Des Devel Ther, 2021, 15: 3207-3221.
24 陈铁楼, 吴织芬. 细胞凋亡及其在牙周炎发病中的分子机制[J]. 同济大学学报(医学版), 2011, 32(4): 116-119.
Chen TL, Wu ZF. Molecular mechanism of apoptosis in pathogenesis of periodontitis[J]. J Tongji Univ (Med Sci), 2011, 32(4): 116-119.
25 季莉莉, 盛雨辰, 王峥涛. 黄芩苷对单核THP-1细胞趋化功能的影响[J]. 中国新药与临床杂志, 2007, 26(6): 422-425.
Ji LL, Sheng YC, Wang ZT. Effects of baicalin on chemotaxis of monocytes THP-1 cell[J]. Chin J New Drugs Clin Remed, 2007, 26(6): 422-425.
26 Huang Y, Hu JD, Zheng J, et al. Down-regulation of the PI3K/Akt signaling pathway and induction of apoptosis in CA46 Burkitt lymphoma cells by bai-calin[J]. J Exp Clin Cancer Res, 2012, 31(1): 48.
27 Kim DH, Kim JM, Lee EK, et al. Modulation of FoxO1 phosphorylation/acetylation by baicalin du-ring aging[J]. J Nutr Biochem, 2012, 23(10): 1277-1284.
28 Wang PZ, Zhu PP, Liu RJ, et al. Baicalin promotes extracellular matrix synthesis in chondrocytes via the activation of hypoxia-inducible factor-1α[J]. Exp Ther Med, 2020, 20(6): 226.
29 Zhu CH, Zhao Y, Wu XY, et al. The therapeutic role of baicalein in combating experimental periodontitis with diabetes via Nrf2 antioxidant signaling pathway[J]. J Periodontal Res, 2020, 55(3): 381-391.
30 Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis[J]. Phy-siol Rev, 2018, 98(3): 1169-1203.
31 Cuadrado A, Rojo AI, Wells G, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases[J]. Nat Rev Drug Discov, 2019, 18(4): 295-317.
32 Chiu AV, Saigh MA, McCulloch CA, et al. The role of NrF2 in the regulation of periodontal health and disease[J]. J Dent Res, 2017, 96(9): 975-983.
33 Nezu M, Suzuki N. Roles of Nrf2 in protecting the kidney from oxidative damage[J]. Int J Mol Sci, 2020, 21(8): E2951.
34 Ungvari Z, Tarantini S, Nyúl-Tóth Á, et al. Nrf2 dysfunction and impaired cellular resilience to oxidative stressors in the aged vasculature: from increased cellular senescence to the pathogenesis of age-related vascular diseases[J]. Geroscience, 2019, 41(6): 727-738.
35 Xiong YX, Zhao B, Zhang WJ, et al. Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signa-ling pathway[J]. Iran J Basic Med Sci, 2020, 23(7): 954-960.
36 Chen WW, Yuan CC, Lu YY, et al. Tanshinone IIA protects against acute pancreatitis in mice by inhibi-ting oxidative stress via the Nrf2/ROS pathway[J]. Oxid Med Cell Longev, 2020, 2020: 5390482.
37 Li J, Li YP, Pan S, et al. Paeonol attenuates ligation-induced periodontitis in rats by inhibiting osteoclastogenesis via regulating Nrf2/NF-κB/NFATc1 signa-ling pathway[J]. Biochimie, 2019, 156: 129-137.
[1] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[2] Luo Xiaojie,Wang Dexu,Chen Xiaotao. Relationship between periodontitis and ferroptosis based on bioinformatics analysis [J]. Int J Stomatol, 2023, 50(6): 661-668.
[3] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[4] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[5] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[6] Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617.
[7] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[8] Liang Zhiying,Zhao Yuanxi,Zhu Jiani,Su Qin.. Retrospective analysis of clinical data of 288 cases of endodontic microsurgery on anterior teeth [J]. Int J Stomatol, 2023, 50(2): 166-171.
[9] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[10] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[11] Li Qiong,Yu Weixian. Research progress on resveratrol for the treatment of periodontitis and its bioavailability [J]. Int J Stomatol, 2023, 50(1): 25-31.
[12] Zhou Jianpeng,Xie Xudong,Zhao Lei,Wang Jun.. Research progress on the roles and mechanisms of T-helper 17 cells and interleukin-17 in periodontitis [J]. Int J Stomatol, 2022, 49(5): 586-592.
[13] Chen Huiyu,Bai Mingru,Ye Ling.. Progress in understanding the correlations between semaphorin 3A and common oral diseases [J]. Int J Stomatol, 2022, 49(5): 593-599.
[14] Zhou Jiajia,Zhao Lei,Xu Xin. Research progress on the genetic polymorphism of periodontitis [J]. Int J Stomatol, 2022, 49(4): 432-440.
[15] Zhu Jiani,Su Qin. Research status of the use of root canal and periapical microflora in refractory periapical periodontitis [J]. Int J Stomatol, 2022, 49(3): 283-289.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .