Int J Stomatol ›› 2023, Vol. 50 ›› Issue (6): 679-685.doi: 10.7518/gjkq.2023107

• Reviews • Previous Articles     Next Articles

Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity

Huang Yuanhong(),Peng Xian,Zhou Xuedong.()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2023-02-17 Revised:2023-06-06 Online:2023-11-01 Published:2023-10-24
  • Contact: Xuedong. Zhou E-mail:huangyuanhung@163.com;zhouxd@scu.edu.cn
  • Supported by:
    National Key Research and Development Plan(2016YFC1102701)

Abstract:

Rhizoma Drynariae is a traditional Chinese medicine utilized to detoxify the kidney and strengthen the bones. It comprises a variety of compounds, including flavonoids, triterpenoids, phenylpropane, lignans, and phenolic acids, which effectively enhance bone metabolism and regulate inflammatory factors. It is currently utilized in the treatment of various bone-related disorders, such as bone fractures and knee osteoarthritis. In recent years, the effectiveness of Rhizoma Drynariae in treating bone-related diseases in the oral cavity has been assessed. The findings have shown that it can promote bone healing in periodontal diseases, accelerate tooth movement during orthodontic treatment, and promote the osseointegration of implant surfaces. This review aims to summarize the biological functions of Rhizoma Drynariae and recent progress in research into its use for the treatment of oral bone-related diseases, thus providing valuable reference for further study and clinical application.

Key words: Rhizoma Drynariae, periodontitis, tooth movement, implant surface treatment

CLC Number: 

  • R 781

TrendMD: 
1 国家药典委员会. 中华人民共和国药典[M]. 北京: 中国医药科技出版社, 2015: 256.
National Pharmacopoeia Board. Pharmacopoeia of the People’s Republic of China[M]: 2015. Beijing: China Medical Science and Technology Press, 2015: 256.
2 Qiao X, Lin XH, Liang YH, et al. Comprehensive chemical analysis of the rhizomes of Drynaria fortunei by orthogonal pre-separation and liquid chromatography mass spectrometry[J]. Planta Med, 2014, 80(4): 330-336.
3 谌顺清, 梁伟, 张雪妹, 等. 骨碎补化学成分和药理作用研究进展[J]. 中国中药杂志, 2021, 46(11): 2737-2745.
Chen SQ, Liang W, Zhang XM, et al. Research progress on chemical compositions and pharmacological action of drynariae rhizoma[J]. China J Chin Mat Med, 2021, 46(11): 2737-2745.
4 Wu L, Ling ZY, Feng XQ, et al. Herb medicines against osteoporosis: active compounds & relevant biological mechanisms[J]. Curr Top Med Chem, 2017, 17(15): 1670-1691.
5 Chen L, Tao ZS, Chen H, et al. Combined treatment with alendronate and drynaria rhizome extracts: effect on fracture healing in osteoporotic rats[J]. Z Gerontol Geriatr, 2018, 51(8): 875-881.
6 Guo WJ, Shi KS, Xiang GH, et al. Effects of rhizoma drynariae cataplasm on fracture healing in a rat model of osteoporosis[J]. Med Sci Monit, 2019, 25: 3133-3139.
7 Sun WP, Li MY, Xie L, et al. Exploring the mechanism of total flavonoids of drynariae rhizoma to improve large bone defects by network pharmacology and experimental assessment[J]. Front Pharmacol, 2021, 12: 603734.
8 Sun WP, Li MY, Zhang Y, et al. Total flavonoids of rhizoma drynariae ameliorates bone formation and mineralization in BMP-Smad signaling pathway induced large tibial defect rats[J]. Biomedecine Pharmacother, 2021, 138: 111480.
9 Yu GY, Zheng GZ, Chang B, et al. Naringin stimulates osteogenic differentiation of rat bone marrow stromal cells via activation of the Notch signaling pathway[J]. Stem Cells Int, 2016, 2016: 7130653.
10 孟春力. 骨碎补提取物调节成骨细胞活性、增殖及相关基因表达的实验研究[J]. 海南医学院学报, 2017, 23(8): 1023-1026.
Meng CL. Rhizome drynariae extract regulates osteoblast viability and proliferation as well as related gene expression: an experimental study[J]. J Hainan Med Univ, 2017, 23(8): 1023-1026.
11 李晋玉, 俞兴, 姜俊杰, 等. 骨碎补总黄酮联合纳米骨材料促进MC3T3-E1细胞的增殖分化[J]. 中国组织工程研究, 2020, 24(7): 1030-1036.
Li JY, Yu X, Jiang JJ, et al. Promoting effect of osteopractic total flavone combined with nano-bone materials on proliferation and differentiation of MC3T3-E1 cells[J]. Chin J Tissue Eng Res, 2020, 24(7): 1030-1036.
12 Li SY, Zhou HL, Hu C, et al. Total flavonoids of rhizoma drynariae promotes differentiation of osteoblasts and growth of bone graft in induced membrane partly by activating Wnt/β‑catenin signaling pathway[J]. Front Pharmacol, 2021, 12: 675470.
13 Song SH, Zhai YK, Li CQ, et al. Effects of total flavonoids from drynariae rhizoma prevent bone loss in vivo and in vitro [J]. Bone Rep, 2016, 5: 262-273.
14 Xu T, Wang L, Tao Y, et al. The function of naringin in inducing secretion of osteoprotegerin and inhibi-ting formation of osteoclasts[J]. Evid Based Complement Alternat Med, 2016, 2016: 8981650.
15 Lin HX, Wang XT, Li ZG, et al. Total flavonoids of Rhizoma drynariae promote angiogenesis and osteogenesis in bone defects[J]. Phytother Res, 2022, 36(9): 3584-3600.
16 Hu YM, Mu PY, Ma X, et al. Rhizoma drynariae total flavonoids combined with calcium carbonate ameliorates bone loss in experimentally induced osteoporosis in rats via the regulation of Wnt3a/β‑ catenin pathway[J]. J Orthop Surg Res, 2021, 16(1): 702.
17 Chen GY, Chen JQ, Liu XY, et al. Total flavonoids of rhizoma drynariae restore the MMP/TIMP ba-lance in models of osteoarthritis by inhibiting the activation of the NF-κB and PI3K/AKT pathways[J]. Evid Based Complement Alternat Med, 2021, 2021: 6634837.
18 Chen GY, Liu XY, Chen JQ, et al. Prediction of rhizoma drynariae targets in the treatment of osteoarthritis based on network pharmacology and experimental verification[J]. Evid Based Complement Alternat Med, 2021, 2021: 5233462.
19 Chen GY, Luo J, Liu Y, et al. Network pharmacology analysis and experimental validation to investigate the mechanism of total flavonoids of rhizoma drynariae in treating rheumatoid arthritis[J]. Drug Des Devel Ther, 2022, 16: 1743-1766.
20 Dai Z. Study on the protective effect and mechanism of the rhizoma drynariae-epimedium formula on osteoarthritis in rats[J]. Contrast Media Mol I-maging, 2022, 2022: 2869707.
21 Kramer CD, Genco CA. Microbiota, immune subversion, and chronic inflammation[J]. Front Immunol, 2017, 8: 255.
22 周渊. Hedgehog在柚皮苷促进人牙周膜干细胞成骨分化中的机制研究[D]. 济南: 山东大学, 2019.
Zhou Y. Mechanism of Hedgehog in naringin promoting osteogenic differentiation of human perio-dontal ligament stem cells[D]. Jinan: Shandong University, 2019.
23 Xu YZ, Wu JJ, Chen YP, et al. The use of zein and Shuanghuangbu for periodontal tissue engineering[J]. Int J Oral Sci, 2010, 2(3): 142-148.
24 Afifi MM, Kotry GS, El-Kimary GI, et al. Immunohistopathologic evaluation of Drynaria fortunei rhizome extract in the management of Class Ⅱ furcation defects in a canine model[J]. J Periodontol, 2018, 89(11): 1362-1371.
25 Chen LL, Lei LH, Ding PH, et al. Osteogenic effect of drynariae rhizoma extracts and Naringin on MC3T3-E1 cells and an induced rat alveolar bone resorption model[J]. Arch Oral Biol, 2011, 56(12): 1655-1662.
26 曾辉, 赵许兵, 李子夏, 等. 骨碎补总黄酮对牙周炎大鼠龈沟液骨钙素及牙槽骨骨密度的影响[J]. 贵州医药, 2016, 40(5): 460-462.
Zeng H, Zhao XB, Li ZX, et al. Effect of rhizoma drynariae Flavone on the sulcular fluid level of osteocalcin and alveolar bone mineral density in pe-riodontitis rats[J]. Guizhou Med J, 2016, 40(5): 460-462.
27 许立硕, 黄玉, 金权, 等. 野菊花骨碎补复合中药制剂联合奥硝唑治疗慢性牙周炎的效果评价[J]. 吉林大学学报(医学版), 2019, 45(5): 1128-1133.
Xu LS, Huang Y, Jin Q, et al. Evaluation on effect of compound Chinese medicine preparation of wild chrysanthemum and rhizome drynariae combined with ornidazole in treatment of chronic periodontitis[J]. J Jilin Univ (Med Ed), 2019, 45(5): 1128-1133.
28 Pinto AS, Alves LS, Maltz M, et al. Does the duration of fixed orthodontic treatment affect caries activity among adolescents and young adults[J]. Ca-ries Res, 2018, 52(6): 463-467.
29 Hoffmann S, Papadopoulos N, Visel D, et al. Inf-luence of piezotomy and osteoperforation of the alveolar process on the rate of orthodontic tooth movement: a systematic review[J]. J Orofac Orthop, 2017, 78(4): 301-311.
30 Singh A, Gill G, Kaur H, et al. Role of osteopontin in bone remodeling and orthodontic tooth movement: a review[J]. Prog Orthod, 2018, 19(1): 18.
31 Dhenain T, Côté F, Coman T. Serotonin and ortho-dontic tooth movement[J]. Biochimie, 2019, 161: 73-79.
32 Yi J, Xiao J, Li H, et al. Effectiveness of adjunctive interventions for accelerating orthodontic tooth movement: a systematic review of systematic reviews[J]. J Oral Rehabil, 2017, 44(8): 636-654.
33 宋佳, 赵刚, 宋春蕾. 骨碎补对牙周炎大鼠正畸牙移动保持阶段RANKL表达影响的研究[J]. 医学信息, 2019(4): 85-87.
Song J, Zhao G, Song CL. Effect of drynaria on the expression of RANKL in the period of orthodontic tooth movement in rats with periodontitis[J]. Med Inform, 2019(4): 85-87.
34 丛淑敏, 王旭霞, 曾婧, 等. 灌服中药骨碎补、丹参对大鼠正畸牙移动过程中骨密度的影响[J]. 上海口腔医学, 2012, 21(4): 361-365.
Cong SM, Wang XX, Zeng J, et al. Effect of rhizoma drynariae and Salvia on alveolar bone density of rats with orthodontic tooth movement[J]. Shanghai J Stomat, 2012, 21(4): 361-365.
35 黄敏, 赵磊, 何丽明, 等. 中药骨碎补对大鼠正畸牙移动影响的初步研究[J]. 基层医学论坛, 2022, 26(4): 1-4.
Huang M, Zhao L, He LM, et al. Preliminary study on effects of drynaria fortunei on rats with orthodontic tooth movement[J]. Medical Forum, 2022, 26(4): 1-4.
36 Elani HW, Starr JR, Da Silva JD, et al. Trends in dental implant use in the US, 1999-2016, and projections to 2026[J]. J Dent Res, 2018, 97(13): 1424-1430.
37 Lin FX, Du SX, Liu DZ, et al. Naringin promotes osteogenic differentiation of bone marrow stromal cells by up-regulating Foxc2 expression via the IHH signaling pathway[J]. Am J Transl Res, 2016, 8(11): 5098-5107.
38 李德超, 李慕勤, 朱杨, 等. 微弧氧化处理的钛合金种植体的表面处理[C]//中华口腔医学会口腔材料专业委员会. 中华口腔医学会口腔材料专业委员会第九次全国口腔材料学术交流会论文集. 大连:中华口腔医学会口腔材料专业委员会, 2014: 56-57.
Li DC, Li MQ, Zhu Y, et al. Surface treatment of titanium alloy implants treated by micro arc oxidation[C]//Chinese Society of Dental Material Science. Proceedings of the ninth National Oral Materials A-cademic Exchange Meeting of Chinese Society of Dental Material Science. Dalian: Chinese Society of Dental Material Science, 2014: 56-57.
39 彭书浩, 李慕勤, 王晶彦, 等. 纯钛表面载骨碎补提取物涂层的制备与性能[J]. 稀有金属材料与工程, 2019(6): 1921-1928.
Peng SH, Li MQ, Wang JY, et al. Preparation and property of coatings carrying extract of rhizoma drynariae on the surface of pure titanium[J]. Rare Met Mater Eng, 2019(6): 1921-1928.
40 王树琪, 李玉娇, 耿建欣, 等. 纯钛-骨补碎-生物复合涂层的研究[J]. 佳木斯大学学报(自然科学版), 2020, 38(6): 88-90.
Wang SQ, Li YJ, Geng JX, et al. Study on pure titanium-drynariae and biological composite coating[J]. J Jiamusi Univ (Nat Sci Ed), 2020, 38(6): 88-90.
41 Kudkuli J, Agrawal A, Gurjar OP, et al. Deminera-lization of tooth enamel following radiation therapy; an in vitro microstructure and microhardness analysis[J]. J Cancer Res Ther, 2020, 16(3): 612-618.
42 Ricucci D, Siqueira JF Jr, Abdelsayed RA, et al. Bacterial invasion of pulp blood vessels in teeth with symptomatic irreversible pulpitis[J]. J Endod, 2021, 47(12): 1854-1864.
43 Luo XT, Wan QX, Cheng L, et al. Mechanisms of bone remodeling and therapeutic strategies in chro-nic apical periodontitis[J]. Front Cell Infect Micro-biol, 2022, 12: 908859.
44 Rajendra Santosh AB. Odontogenic cysts[J]. Dent Clin North Am, 2020, 64(1): 105-119.
[1] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[2] Luo Xiaojie,Wang Dexu,Chen Xiaotao. Relationship between periodontitis and ferroptosis based on bioinformatics analysis [J]. Int J Stomatol, 2023, 50(6): 661-668.
[3] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[4] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[5] Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617.
[6] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[7] Liang Zhiying,Zhao Yuanxi,Zhu Jiani,Su Qin.. Retrospective analysis of clinical data of 288 cases of endodontic microsurgery on anterior teeth [J]. Int J Stomatol, 2023, 50(2): 166-171.
[8] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[9] Li Qiong,Yu Weixian. Research progress on resveratrol for the treatment of periodontitis and its bioavailability [J]. Int J Stomatol, 2023, 50(1): 25-31.
[10] Huang Weikun,Xu Qiuyan,Zhou Ting.. Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages [J]. Int J Stomatol, 2022, 49(5): 521-528.
[11] Zhou Jianpeng,Xie Xudong,Zhao Lei,Wang Jun.. Research progress on the roles and mechanisms of T-helper 17 cells and interleukin-17 in periodontitis [J]. Int J Stomatol, 2022, 49(5): 586-592.
[12] Chen Huiyu,Bai Mingru,Ye Ling.. Progress in understanding the correlations between semaphorin 3A and common oral diseases [J]. Int J Stomatol, 2022, 49(5): 593-599.
[13] Zhou Jiajia,Zhao Lei,Xu Xin. Research progress on the genetic polymorphism of periodontitis [J]. Int J Stomatol, 2022, 49(4): 432-440.
[14] Zhu Jiani,Su Qin. Research status of the use of root canal and periapical microflora in refractory periapical periodontitis [J]. Int J Stomatol, 2022, 49(3): 283-289.
[15] Ma Yu,Zuo Yu,Zhang Xin. Photodynamic therapy as an adjunct to periodontitis: a meta-analysis [J]. Int J Stomatol, 2022, 49(3): 305-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .