Int J Stomatol ›› 2024, Vol. 51 ›› Issue (1): 60-67.doi: 10.7518/gjkq.2024007

• Original Articles • Previous Articles     Next Articles

Effects of circular RNA hsa_circ_0085576 on cell migration and invasion of oral squamous cell carcinoma by regulating the microRNA-498/B-cell-specific Moloney murine leukemia virus integration site 1 axis

Li Liheng1(),Wang Rui1,Wang Xiaoming1,Zhang Zhiyi1,Zhang Xuan1,An Feng1,Wang Qin1,Zhang Fan2   

  1. 1.Dept. of Stomatology, the First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
    2.Dept. of Pathology, the First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
  • Received:2023-06-15 Revised:2023-09-26 Online:2024-01-01 Published:2024-01-10
  • Contact: Liheng Li E-mail:jugrmu@163.com
  • Supported by:
    Hebei Province 2021 Annual Medical Science Research Project(20210802)

Abstract:

Objective This study aims to explore the effects of circular RNA hsa_circ_0085576 on cell migration and invasion of oral squamous cell carcinoma (OSCC) and the underlying molecular mechanism. Methods Circular RNA hsa_circ_0085576, microRNA-498 (miR-498), and B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) in the cells of OSCC were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses. CCK-8, scratch test, Transwell test, qRT-PCR, and Western blot were used to detect the proliferation, migration, and invasion ability of SCC-15 cells and the expression of related genes and proteins. Results The expression of hsa_circ_0085576 and BMI-1 in the cells of OSCC was upregulated, and that of miR-498 was downregulated (P<0.05). The proliferative activity, scratch healing rate, number of invasive cells, and expression levels of cyclinD1 and vimentin proteins of SCC-15 cells were downregulated, whereas the expression levels of miR-498 and E-cadherin proteins were upregulated (P<0.05). Inhibition of miR-498 expression weakened the inhibitory effect of downregulating hsa_circ_0085576 on the proliferation, migration, and invasion of OSCC cells. Upregulation of BMI-1 expression attenuated the inhibitory effect of overexpressed miR-498 on the proliferation, migration, and invasion of OSCC cells. Conclusion Downregulation of hsa_circ_0085576 expression inhibited the proliferation, migration, and invasion of OSCC cells by activating the miR-498/BMI-1 axis.

Key words: circular RNA hsa_circ_0085576, microRNA-498, B-cell-specific Moloney murine leukemia virus integration site 1, oral squamous cell carcinoma

CLC Number: 

  • R730.2

TrendMD: 

Tab 1

qRT-PCR primer sequences"

基因上游引物(5’—3’)下游引物(5’—3’)
hsa_circ_0085576CTTTGCAGTGAGCCATGGGAGAGTCGTCTCTCCTGTCACG
BMI-1CTGGTTGCCCATTGACAGCCAGAAAATGAATGCGAGCCA
GAPDHCTCTGCTCCTCCTGTTCGACGCGCCCAATACGACCAAATC
miR-498GGTTTGAAGCCAGGCGGTTTCCAGTGCAGGGTCCGAGGTAT
U6GTGCTCGCTTCGGCAGCACATATACAAAAATATGGAACGCTTCACGAATTTG

Fig 1

Expression levels of hsa_circ_0085576, miR-498 and BMI-1 in different OSCC cells"

Fig 2

Effect of down-regulated expression of hsa_circ_0085576 on expression of BMI-1 protein"

Tab 2

Effect of down-regulated expression of hsa_circ_0085576 on expression of miR-498 and BMI-1 xˉ± s,n=6"

组别hsa_circ_0085576miR-498BMI-1蛋白
si-NC1.02±0.071.00±0.061.29±0.18
干扰10.52±0.04*1.55±0.11*0.57±0.06*
干扰20.24±0.00*2.15±0.12*0.46±0.04*
干扰30.31±0.02*1.96±0.14*0.53±0.03*

Fig 3

Effect of down-regulated expression of hsa_circ_0085576 and miR-498 on proliferation, migration and invasion of SCC-15 cells"

Fig 4

Effects of overexpression of miR-498 and BMI-1 on proliferation, migration and invasion of SCC-15 cells"

Fig 5

Targeting relationship between hsa_circ_0085576, miR-498, and BMI-1"

1 Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer[J]. Oral Oncol, 2009, 45(4/5): 309-316.
2 Thakur R, Thakar A, Malhotra RK, et al. Tumor-host interface in oral squamous cell carcinoma: impact on nodal metastasis and prognosis[J]. Eur Arch Otorhinolaryngol, 2021, 278(12): 5029-5039.
3 宗曾艳, 孔凡虹, 王萌萌, 等. 环状RNA在恶性肿瘤发生发展和诊疗中的研究进展[J]. 国际检验医学杂志, 2020, 41(1): 98-103.
Zong ZY, Kong FH, Wang MM, et al. Research pro-gress of circular RNA in carcinogenesis, development, diagnosis and treatment of malignant tumors[J]. Int J Lab Med, 2020, 41(1): 98-103.
4 Liu JP, Jiang X, Zou AL, et al. circIGHG-induced epithelial-to-mesenchymal transition promotes oral squamous cell carcinoma progression via miR-142-5p/IGF2BP3 signaling[J]. Cancer Res, 2021, 81(2): 344-355.
5 Müller T, Stein U, Poletti A, et al. ASAP1 promotes tumor cell motility and invasiveness, stimulates metastasis formation in vivo, and correlates with poor survival in colorectal cancer patients[J]. Oncogene, 2010, 29(16): 2393-2403.
6 Luo Q, Zhang SY, Zhang DH, et al. Expression of ASAP1 and FAK in gastric cancer and its clinicopathological significance[J]. Oncol Lett, 2020, 20(1): 974-980.
7 He JC, McLaughlin RP, van der Beek L, et al. Integrative analysis of genomic amplification-dependent expression and loss-of-function screen identifies ASAP1 as a driver gene in triple-negative breast cancer progression[J]. Oncogene, 2020, 39(20): 4118-4131.
8 Li MH, Tian LL, Yao HC, et al. ASAP1 mediates the invasive phenotype of human laryngeal squamous cell carcinoma to affect survival prognosis[J]. Oncol Rep, 2014, 31(6): 2676-2682.
9 Liu GH, Zhou JM, Piao YL, et al. Hsa_circ_0085576 promotes clear cell renal cell carcinoma tumorigenesis and metastasis through the miR-498/YAP1 axis[J]. Aging (Albany NY), 2020, 12(12): 11530-11549.
10 Li DZ, Yan M, Sun FF, et al. miR-498 inhibits autophagy and M2-like polarization of tumor-associa-ted macrophages in esophageal cancer via MDM2/ATF3 [J]. Epigenomics, 2021, 13(13): 1013-1030.
11 Chen DP, Li YS, Wang YK, et al. LncRNA HOTAIRM1 knockdown inhibits cell glycolysis meta-bolism and tumor progression by miR-498/ABCE1 axis in non-small cell lung cancer[J]. Genes Geno-mics, 2021, 43(2): 183-194.
12 Kalish JM, Tang XH, Scognamiglio T, et al. Doxycycline-induced exogenous Bmi-1 expression enhances tumor formation in a murine model of oral squamous cell carcinoma[J]. Cancer Biol Ther, 2020, 21(5): 400-411.
13 You D, Wang DW, Liu PJ, et al. MicroRNA-498 inhibits the proliferation, migration and invasion of gastric cancer through targeting BMI-1 and suppres-sing AKT pathway[J]. Hum Cell, 2020, 33(2): 366-376.
14 Deng GX, Mou TY, He JY, et al. Circular RNA circ-RHOBTB3 Acts as a sponge for miR-654-3p inhibi-ting gastric cancer growth[J]. J Exp Clin Cancer Res, 2020, 39(1): 1.
15 Peng QS, Cheng YN, Zhang WB, et al. circRNA_0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhi-bit Hippo signaling pathway[J]. Cell Death Dis, 2020, 11(2): 112.
16 Wu J, Jiang ZM, Xie Y, et al. miR-218 suppresses the growth of hepatocellular carcinoma by inhibi-ting the expression of proto-oncogene Bmi-1[J]. J BUON, 2018, 23(3): 604-610.
17 Rong X, Gao W, Yang XM, et al. Downregulation of hsa_circ_0007534 restricts the proliferation and invasion of cervical cancer through regulating miR-498/BMI-1 signaling[J]. Life Sci, 2019, 235: 116785.
[1] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[2] Wu Jiamin,Xia Bin,Yang Hefeng,Xu Biao.. Research progress on cancer-associated fibroblasts in the tumor microenvironment of oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(6): 711-717.
[3] Liu Jianglong, Tuerdi Maimaitituxun. Progress of contrast-enhanced ultrasound in the diagnosis of cervical lymph node metastasis from oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(5): 514-520.
[4] Sheng Nanning,Wang Jue,Nan Xinrong. Research progress on mechanism and treatment of sex-determining region Y box 9 in oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(3): 314-320.
[5] Li Tan,Liang Xin-hua.. Role of discoidin domain receptor 1 in the regulation of malignant tumor progression and therapy [J]. Int J Stomatol, 2023, 50(2): 230-236.
[6] Zhao Zhuoping,Xin Pengfei,Gao Yang,Zhang Caifeng,Zhang Kuanshou,Liu Qingmei. Research progress on the use of photothermal therapy to treat oral squamous cell carcinoma [J]. Int J Stomatol, 2022, 49(4): 462-470.
[7] Jiang Han,Shen Yingqiang,Chen Qianming. Experimental study of muscarinic receptors on the biological behavior of oral squamous cell carcinoma through Yes related protein signal [J]. Int J Stomatol, 2022, 49(2): 138-143.
[8] Jiang Yulei,Xia Bin,Rao Nanquan,Yang Hefeng,Xu Biao. Exosomes mediate the malignant progression of oral squamous cell carcinoma and its application in diagnosis and treatment [J]. Int J Stomatol, 2021, 48(6): 711-717.
[9] Gan Jianguo,Gao Pan,Wang Xiaoyi. Research progress on the relationship between circulating tumor cells and oral squamous cell carcinoma [J]. Int J Stomatol, 2021, 48(2): 205-212.
[10] Huang Junwen,Qiao Jie,Mei Zi,Chen Zhuo,Li Yang,Qiao Bin. Expression and clinical significance of lipopolysaccharide binding protein in oral squamous cell carcinoma [J]. Int J Stomatol, 2021, 48(1): 50-57.
[11] He Yuqing,Dan Hongxia,Chen Qianming. Application of photodynamic therapy for oral carcinogenesis prevention [J]. Int J Stomatol, 2020, 47(6): 669-676.
[12] Hao Fu,Ning Yi,Sun Rui,Zheng Xiaoxu. Expression and potential clinical significance of Transformer 2β in oral squamous cell carcinoma [J]. Int J Stomatol, 2020, 47(2): 159-165.
[13] Xue Lingli,Li Yadong. Survival analysis of patients with oral squamous cell carcinoma treated by radical surgery for the first time [J]. Int J Stomatol, 2020, 47(2): 166-174.
[14] Chen Hongli,Yang Jing,Yin Gang,Li Haoyuan,Qiao Yan. Expression of zinc finger protein 32 in oral squamous cell carcinoma and its effect on oral squamous cell carcinoma stem cells [J]. Int J Stomatol, 2019, 46(6): 631-639.
[15] Bing Yan,Xianyang Luo,Yingyun Tan,Limei Guan,Lili Xue. Research on the surface-enhanced Raman spectrum of blood serum for clinical staging of oral squamous cell carcinoma [J]. Int J Stomatol, 2019, 46(3): 277-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .