Int J Stomatol ›› 2021, Vol. 48 ›› Issue (6): 711-717.doi: 10.7518/gjkq.2021109

• Reviews • Previous Articles     Next Articles

Exosomes mediate the malignant progression of oral squamous cell carcinoma and its application in diagnosis and treatment

Jiang Yulei(),Xia Bin,Rao Nanquan,Yang Hefeng,Xu Biao()   

  1. Dept. of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650500, China
  • Received:2021-03-28 Revised:2021-07-10 Online:2021-11-01 Published:2021-10-28
  • Contact: Biao Xu;
  • Supported by:
    Natural Science Foundation of Yunnan Province(2018rs0210)


Exosomes are extracellular vesicles that play an important role in intercellular communication and are widely present in human body fluids. Exosomes exert biological effects by carrying various active substances, such as proteins, mRNA, microRNA, and DNA. For example, those secreted by oral squamous cell carcinoma (OSCC) can affect the tumor microenvironment and promote the development of tumors by activating various signal pathways. Therefore, these vesicles provide a new treatment strategy for assisting the early diagnosis and prognosis of OSCC. Owing to their unique interaction in the tumor microenvironment, exosomes and their modified products can be used as effective carriers of genes and drugs for targeted OSCC therapy. This article reviews the production of exosomes, their role in OSCC, and the clinical diagnosis and treatment of exosomes in OSCC.

Key words: exosome, oral squamous cell carcinoma, targeted therapy

CLC Number: 

  • R739.8

[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.
doi: 10.3322/caac.v68.6
[2] 房元章. 浅谈癌症及其治疗方法[J]. 生物学教学, 2005(1):61-62.
Fang YZ. Discuss cancer and its treatment[J]. Biol Teach, 2005(1):61-62.
[3] Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 1989, 8(2):98-101.
[4] Rak J. Extracellular vesicles-biomarkers and effectors of the cellular interactome in cancer[J]. Front Pharmacol, 2013, 4:21.
[5] Boyiadzis M, Whiteside TL. The emerging roles of tumor-derived exosomes in hematological malignancies[J]. Leukemia, 2017, 31(6):1259-1268.
doi: 10.1038/leu.2017.91 pmid: 28321122
[6] Kalluri R. The biology and function of exosomes in cancer[J]. J Clin Invest, 2016, 126(4):1208-1215.
doi: 10.1172/JCI81135 pmid: 27035812
[7] Bergmann C, Strauss L, Wieckowski E, et al. Tumor-derived microvesicles in sera of patients with head and neck cancer and their role in tumor progression[J]. Head Neck, 2009, 31(3):371-380.
doi: 10.1002/hed.v31:3
[8] Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles[J]. J Extracell Vesicles, 2013, 2.
[9] Kalluri R, LeBleu VS . The biology, function, and bio-medical applications of exosomes[J]. Science, 2020, 367(6478):6977.
[10] Ostrowski M, Carmo NB, Krumeich S, et al. Rab-27a and Rab27b control different steps of the exosome secretion pathway[J]. Nat Cell Biol, 2010, 12(1):19-30.
doi: 10.1038/ncb2000 pmid: 19966785
[11] Zhang YT, Hao ZC, Wang PF, et al. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated pro-motion of angiogenesis in a rat model of stabilized fracture[J]. Cell Prolif, 2019, 52(2):e12570.
doi: 10.1111/cpr.2019.52.issue-2
[12] Zeng ZC, Li YL, Pan YJ, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis[J]. Nat Commun, 2018, 9(1):5395.
doi: 10.1038/s41467-018-07810-w
[13] Zhou Y, Ren HZ, Dai B, et al. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts[J]. J Exp Clin Cancer Res, 2018, 37(1):324.
doi: 10.1186/s13046-018-0965-2
[14] Wang Z, Chen JQ, Liu JL, et al. Exosomes in tumor microenvironment: novel transporters and biomarkers[J]. J Transl Med, 2016, 14(1):297.
doi: 10.1186/s12967-016-1056-9
[15] Luga V, Wrana JL. Tumor-stroma interaction: revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis[J]. Cancer Res, 2013, 73(23):6843-6847.
doi: 10.1158/0008-5472.CAN-13-1791
[16] Principe S, Mejia-Guerrero S, Ignatchenko V, et al. Proteomic analysis of cancer-associated fibroblasts reveals a paracrine role for MFAP5 in human oral tongue squamous cell carcinoma[J]. J Proteome Res, 2018, 17(6):2045-2059.
doi: 10.1021/acs.jproteome.7b00925 pmid: 29681158
[17] Sun LP, Xu K, Cui J, et al. Cancer‑associated fibro-blast‑derived exosomal miR‑382‑5p promotes the mi-gration and invasion of oral squamous cell carcinoma[J]. Oncol Rep, 2019, 42(4):1319-1328.
[18] Li YY, Tao YW, Zheng SM, et al. Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p[J]. EBioMedicine, 2018, 36:209-220.
doi: 10.1016/j.ebiom.2018.09.006
[19] Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles[J]. Nat Rev Immunol, 2014, 14(3):195-208.
doi: 10.1038/nri3622 pmid: 24566916
[20] Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming[J]. Nat Med, 2001, 7(3):297-303.
pmid: 11231627
[21] Rao Q, Zuo BF, Lu Z, et al. Tumor-derived exoso-mes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro[J]. Hepatology, 2016, 64(2):456-472.
doi: 10.1002/hep.28549
[22] Plebanek MP, Angeloni NL, Vinokour E, et al. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic ni-che[J]. Nat Commun, 2017, 8(1):1319.
doi: 10.1038/s41467-017-01433-3 pmid: 29105655
[23] Ludwig S, Floros T, Theodoraki MN, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer[J]. Clin Cancer Res, 2017, 23(16):4843-4854.
doi: 10.1158/1078-0432.CCR-16-2819 pmid: 28400428
[24] van Dalen FJ, van Stevendaal MHME, Fennemann FL, et al. Molecular repolarisation of tumour-associated macrophages[J]. Molecules, 2018, 24(1):E9.
[25] Eichmüller SB, Osen W, Mandelboim O, et al. Immune modulatory microRNAs involved in tumor attack and tumor immune escape[J]. J Natl Cancer In-st, 2017, 109(10): djx034.
[26] Cai J, Qiao B, Gao N, et al. Oral squamous cell carcinoma-derived exosomes promote M2 subtype ma-crophage polarization mediated by exosome-enclo-sed miR-29a-3p[J]. Am J Physiol Cell Physiol, 2019, 316(5):C731-C740.
doi: 10.1152/ajpcell.00366.2018
[27] Xiao M, Zhang J, Chen W, et al. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1):143.
doi: 10.1186/s13046-018-0815-2
[28] Li L, Cao BR, Liang XH, et al. Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes[J]. Oncogene, 2019, 38(15):2830-2843.
doi: 10.1038/s41388-018-0627-z
[29] Ribeiro MF, Zhu HY, Millard RW, et al. Exosomes function in pro- and anti-angiogenesis[J]. Curr Angiogenes, 2013, 2(1):54-59.
[30] Nazarenko I, Rana S, Baumann A, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation[J]. Cancer Res, 2010, 70(4):1668-1678.
doi: 10.1158/0008-5472.CAN-09-2470 pmid: 20124479
[31] de Andrade A, de Oliveira CE, Dourado MR, et al. Extracellular vesicles from oral squamous carcinoma cells display pro- and anti-angiogenic properties[J]. Oral Dis, 2018, 24(5):725-731.
doi: 10.1111/odi.12765 pmid: 28887832
[32] Ludwig N, Yerneni SS, Razzo BM, et al. Exosomes from HNSCC promote angiogenesis through reprogramming of endothelial cells[J]. Mol Cancer Res, 2018, 16(11):1798-1808.
doi: 10.1158/1541-7786.MCR-18-0358 pmid: 30042174
[33] Sharma A. Chemoresistance in cancer cells: exoso-mes as potential regulators of therapeutic tumor heterogeneity[J]. Nanomedicine (Lond), 2017, 12(17):2137-2148.
doi: 10.2217/nnm-2017-0184
[34] Kirave P, Gondaliya P, Kulkarni B, et al. Exosome mediated miR-155 delivery confers cisplatin chemoresistance in oral cancer cells via epithelial-mesenchymal transition[J]. Oncotarget, 2020, 11(13):1157-1171.
doi: 10.18632/oncotarget.v11i13
[35] Liu T, Chen G, Sun DW, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma[J]. Acta Biochim Biophys Sin (Shanghai), 2017, 49(9):808-816.
doi: 10.1093/abbs/gmx078
[36] Khoo XH, Paterson IC, Goh BH, et al. Cisplatin-resistance in oral squamous cell carcinoma: regulation by tumor cell-derived extracellular vesicles[J]. Cancers (Basel), 2019, 11(8):E1166.
[37] Rahbarghazi R, Jabbari N, Sani NA, et al. Tumor-derived extracellular vesicles: reliable tools for Cancer diagnosis and clinical applications[J]. Cell Commun Signal, 2019, 17(1):73.
doi: 10.1186/s12964-019-0390-y pmid: 31291956
[38] Cristaldi M, Mauceri R, Di Fede O, et al. Salivary biomarkers for oral squamous cell carcinoma diagnosis and follow-up: current status and perspectives[J]. Front Physiol, 2019, 10:1476.
doi: 10.3389/fphys.2019.01476 pmid: 31920689
[39] Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, piwi-interacting RNA, and circular RNA in human saliva[J]. Clin Chem, 2015, 61(1):221-230.
doi: 10.1373/clinchem.2014.230433
[40] Keller S, Ridinger J, Rupp AK, et al. Body fluid derived exosomes as a novel template for clinical diagnostics[J]. J Transl Med, 2011, 9:86.
doi: 10.1186/1479-5876-9-86
[41] Sharma S, Gillespie BM, Palanisamy V, et al. Quantitative nanostructural and single-molecule force spe-ctroscopy biomolecular analysis of human-saliva-derived exosomes[J]. Langmuir, 2011, 27(23):14394-14400.
doi: 10.1021/la2038763
[42] Zhong WQ, Ren JG, Xiong XP, et al. Increased salivary microvesicles are associated with the prognosis of patients with oral squamous cell carcinoma[J]. J Cell Mol Med, 2019, 23(6):4054-4062.
doi: 10.1111/jcmm.2019.23.issue-6
[43] He LH, Ping F, Fan ZN, et al. Salivary exosomal miR-24-3p serves as a potential detective biomarker for oral squamous cell carcinoma screening[J]. Biomedecine Pharmacother, 2020, 121:109553.
[44] Liu CJ, Lin SC, Yang CC, et al. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma[J]. Head Neck, 2012, 34(2):219-224.
doi: 10.1002/hed.v34.2
[45] Peng Q, Zhang S, Yang Q, et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system[J]. Biomaterials, 2013, 34(33):8521-8530.
doi: 10.1016/j.biomaterials.2013.07.102
[46] Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery[J]. J Control Release, 2015, 219:396-405.
doi: 10.1016/j.jconrel.2015.07.030
[47] Wiklander OP, Nordin JZ, O'Loughlin A , et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting[J]. J Extracell Vesicles, 2015, 4:26316.
[48] Li L, Lu S, Liang X, et al. γδTDEs: an efficient delivery system for miR-138 with anti-tumoral and immunostimulatory roles on oral squamous cell carcinoma[J]. Mol Ther Nucleic Acids, 2019, 14:101-113.
doi: 10.1016/j.omtn.2018.11.009
[49] Xie C, Du LY, Guo FY, et al. Exosomes derived from microRNA-101-3p-overexpressing human bone marrow mesenchymal stem cells suppress oral cancer cell proliferation, invasion, and migration[J]. Mol Cell Biochem, 2019, 458(1/2):11-26.
doi: 10.1007/s11010-019-03526-7
[50] Li WW, Han Y, Zhao ZF, et al. Oral mucosal mesenchymal stem cell‑derived exosomes: a potential therapeutic target in oral premalignant lesions[J]. Int J Oncol, 2019, 54(5):1567-1578.
[1] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[2] Li Liheng,Wang Rui,Wang Xiaoming,Zhang Zhiyi,Zhang Xuan,An Feng,Wang Qin,Zhang Fan. Effects of circular RNA hsa_circ_0085576 on cell migration and invasion of oral squamous cell carcinoma by regulating the microRNA-498/B-cell-specific Moloney murine leukemia virus integration site 1 axis [J]. Int J Stomatol, 2024, 51(1): 60-67.
[3] Wu Jiamin,Xia Bin,Yang Hefeng,Xu Biao.. Research progress on cancer-associated fibroblasts in the tumor microenvironment of oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(6): 711-717.
[4] Liu Jianglong, Tuerdi Maimaitituxun. Progress of contrast-enhanced ultrasound in the diagnosis of cervical lymph node metastasis from oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(5): 514-520.
[5] Sheng Nanning,Wang Jue,Nan Xinrong. Research progress on mechanism and treatment of sex-determining region Y box 9 in oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(3): 314-320.
[6] Li Tan,Liang Xin-hua.. Role of discoidin domain receptor 1 in the regulation of malignant tumor progression and therapy [J]. Int J Stomatol, 2023, 50(2): 230-236.
[7] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[8] Zhao Zhuoping,Xin Pengfei,Gao Yang,Zhang Caifeng,Zhang Kuanshou,Liu Qingmei. Research progress on the use of photothermal therapy to treat oral squamous cell carcinoma [J]. Int J Stomatol, 2022, 49(4): 462-470.
[9] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[10] Jiang Han,Shen Yingqiang,Chen Qianming. Experimental study of muscarinic receptors on the biological behavior of oral squamous cell carcinoma through Yes related protein signal [J]. Int J Stomatol, 2022, 49(2): 138-143.
[11] Ai Xiaoqing,Dou Lei,Qiao Xin,Yang Deqin. MicroRNA profile of exosomes derived from dental pulp stromal cells under three-dimensional culture condition [J]. Int J Stomatol, 2022, 49(1): 27-36.
[12] Qian Ying,Gong Jiaxing,Yu Mengfei,Liu Yu,Wei Dong,Zhu Ziyu,Lu Kejie,Wang Huiming. Diagnosis and treatment of ameloblastoma from molecular biology perspective [J]. Int J Stomatol, 2021, 48(5): 570-578.
[13] Ma Pingchuan,Li Chunjie,Li Longjiang. Diagnosis and treatment of salivary duct carcinoma [J]. Int J Stomatol, 2021, 48(4): 459-467.
[14] Gan Jianguo,Gao Pan,Wang Xiaoyi. Research progress on the relationship between circulating tumor cells and oral squamous cell carcinoma [J]. Int J Stomatol, 2021, 48(2): 205-212.
[15] Huang Junwen,Qiao Jie,Mei Zi,Chen Zhuo,Li Yang,Qiao Bin. Expression and clinical significance of lipopolysaccharide binding protein in oral squamous cell carcinoma [J]. Int J Stomatol, 2021, 48(1): 50-57.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .