Int J Stomatol ›› 2022, Vol. 49 ›› Issue (4): 489-496.doi: 10.7518/gjkq.2022060
• Reviews • Previous Articles
Cai Chaoying1(),Chen Xuepeng1,Hu Ji’an2()
CLC Number:
1 | Langer R, Vacanti JP. Tissue engineering[J]. Scien-ce, 1993, 260(5110): 920-926. |
2 | Soteriou D, Fuchs Y. A matter of life and death: stem cell survival in tissue regeneration and tumour formation[J]. Nat Rev Cancer, 2018, 18(3): 187-201. |
3 | Volarevic V, Markovic BS, Gazdic M, et al. Ethical and safety issues of stem cell-based therapy[J]. Int J Med Sci, 2018, 15(1): 36-45. |
4 | Kim HJ, Park JS. Usage of human mesenchymal stem cells in cell-based therapy: advantages and disadvantages[J]. Dev Reprod, 2017, 21(1): 1-10. |
5 | Zheng CX, Chen J, Liu SY, et al. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation[J]. Int J Oral Sci, 2019, 11(3): 23. |
6 | Ratajczak J, Wysoczynski M, Hayek F, et al. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication[J]. Leukemia, 2006, 20(9): 1487-1495. |
7 | 刘士博, 刘显. 不同源性外泌体在骨缺损修复中的研究进展[J]. 华西口腔医学杂志, 2020, 38(2): 193-197. |
Liu SB, Liu X. Review for different sources of exosomes in bone tissue engineering research[J]. West China J Stomatol, 2020, 38(2): 193-197. | |
8 | Haraszti RA, Miller R, Stoppato M, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity[J]. Mol Ther, 2018, 26(12): 2838-2847. |
9 | Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and di-sease[J]. Int J Mol Sci, 2019, 20(19): E4684. |
10 | Yang Y, Knight R, Stephens P, et al. Three-dimensional culture of oral progenitor cells: effects on small extracellular vesicles production and proliferative function[J]. J Oral Pathol Med, 2020, 49(4): 342-349. |
11 | Konoshenko MY, Lekchnov EA, Vlassov AV, et al. Isolation of extracellular vesicles: general methodo-logies and latest trends[J]. Biomed Res Int, 2018, 2018: 8545347. |
12 | Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey[J]. J Extracell Vesicles, 2016, 5: 32945. |
13 | Yang DB, Zhang WH, Zhang HY, et al. Progress, opportunity, and perspective on exosome isolation-efforts for efficient exosome-based theranostics[J]. Theranostics, 2020, 10(8): 3684-3707. |
14 | Huang JH, Xiong JY, Yang L, et al. Cell-free exosome-laden scaffolds for tissue repair[J]. Nanoscale, 2021, 13(19): 8740-8750. |
15 | Cheng YR, Zeng QY, Han Q, et al. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes[J]. Protein Cell, 2019, 10(4): 295-299. |
16 | Wu JY, Li YJ, Hu XB, et al. Preservation of small extracellular vesicles for functional analysis and the-rapeutic applications: a comparative evaluation of storage conditions[J]. Drug Deliv, 2021, 28(1): 162-170. |
17 | Trubiani O, Marconi GD, Pierdomenico SD, et al. Human oral stem cells, biomaterials and extracellular vesicles: a promising tool in bone tissue repair[J]. Int J Mol Sci, 2019, 20(20): E4987. |
18 | Elahi FM, Farwell DG, Nolta JA, et al. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells[J]. Stem Cells, 2020, 38(1): 15-21. |
19 | Komaki M, Numata Y, Morioka C, et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis[J]. Stem Cell Res Ther, 2017, 8(1): 219. |
20 | Zhou H, Li X, Yin Y, et al. The proangiogenic effects of extracellular vesicles secreted by dental pulp stem cells derived from periodontally compromised teeth[J]. Stem Cell Res Ther, 2020, 11(1): 110. |
21 | Zhang SP, Teo KYW, Chuah SJ, et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis[J]. Biomaterials, 2019, 200: 35-47. |
22 | Hiraki T, Kunimatsu R, Nakajima K, et al. Stem cell-derived conditioned media from human exfolia-ted deciduous teeth promote bone regeneration[J]. Oral Dis, 2020, 26(2): 381-390. |
23 | Wang MH, Li J, Ye YY, et al. SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro [J]. Differentiation, 2020, 111: 1-11. |
24 | Zhuang XY, Ji LL, Jiang H, et al. Exosomes derived from stem cells from the apical papilla promote dentine-pulp complex regeneration by inducing specific dentinogenesis[J]. Stem Cells Int, 2020, 2020: 581-6723. |
25 | Stanko P, Altanerova U, Jakubechova J, et al. Dental mesenchymal stem/stromal cells and their exosomes[J]. Stem Cells Int, 2018, 2018: 8973613. |
26 | Imai T, Takahashi Y, Nishikawa M, et al. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice[J]. J Extracell Vesicles, 2015, 4: 26238. |
27 | Yan HC, Yu TT, Li J, et al. The delivery of extracellular vesicles loaded in biomaterial scaffolds for bone regeneration[J]. Front Bioeng Biotechnol, 2020, 8: 1015. |
28 | Cheng A, Schwartz Z, Kahn A, et al. Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration[J]. Tissue Eng Part B Rev, 2019, 25(1): 14-29. |
29 | Perić Kačarević Ž, Rider P, Alkildani S, et al. An introduction to bone tissue engineering[J]. Int J Artif Organs, 2020, 43(2): 69-86. |
30 | Jazayeri HE, Lee SM, Kuhn L, et al. Polymeric scaffolds for dental pulp tissue engineering: a review[J]. Dent Mater, 2020, 36(2): e47-e58. |
31 | Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: recent advances and challenges[J]. Bioact Mater, 2021, 6(12): 4830-4855. |
32 | Eggli PS, Müller W, Schenk RK. Porous hydroxya-patite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution[J]. Clin Orthop Relat Res, 1988(232): 127-138. |
33 | Pishavar E, Luo HR, Naserifar M, et al. Advanced hydrogels as exosome delivery systems for osteogenic differentiation of MSCs: application in bone regeneration[J]. Int J Mol Sci, 2021, 22(12): 6203. |
34 | Huang QT, Zou YJ, Arno MC, et al. Hydrogel scaffolds for differentiation of adipose-derived stem cells[J]. Chem Soc Rev, 2017, 46(20): 6255-6275. |
35 | Hu HX, Dong LL, Bu ZH, et al. miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration[J]. J Extracell Vesicles, 2020, 9(1): 1778883. |
36 | Yang S, Zhu B, Yin P, et al. Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration[J]. ACS Biomater Sci Eng, 2020, 6(3): 1590-1602. |
37 | Jiang SP, Tian GZ, Yang Z, et al. Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration[J]. Bioact Mater, 2021, 6(9): 2711-2728. |
38 | Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27): 5474-5491. |
39 | Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size[J]. Tissue Eng Part B Rev, 2013, 19(6): 485-502. |
40 | Marques A, Miranda G, Silva F, et al. Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(3): 377-393. |
41 | Jeon JE, Vaquette C, Klein TJ, et al. Perspectives in multiphasic osteochondral tissue engineering[J]. Anat Rec (Hoboken), 2014, 297(1): 26-35. |
42 | Zhang JY, Liu XL, Li HY, et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signa-ling pathway[J]. Stem Cell Res Ther, 2016, 7(1): 136. |
43 | Li WY, Liu YS, Zhang P, et al. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration[J]. ACS Appl Mater Interfaces, 2018, 10(6): 5240-5254. |
44 | Shafei S, Khanmohammadi M, Heidari R, et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: an in vivo study[J]. J Biomed Mater Res A, 2020, 108(3): 545-556. |
45 | Liu XL, Yang YL, Li Y, et al. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage rege-neration[J]. Nanoscale, 2017, 9(13): 4430-4438. |
46 | Zha Y, Li YW, Lin TY, et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects[J]. Theranostics, 2021, 11(1): 397-409. |
47 | Zhang LL, Fan CX, Hao WP, et al. NSCs migration promoted and drug delivered exosomes-collagen scaffold via a bio-specific peptide for one-step spinal cord injury repair[J]. Adv Healthc Mater, 2021, 10(8): e2001896. |
48 | Liu AQ, Lin D, Zhao HJ, et al. Optimized BMSC-derived osteoinductive exosomes immobilized in hierarchical scaffold via lyophilization for bone repair through Bmpr2/Acvr2b competitive receptor-activated Smad pathway[J]. Biomaterials, 2021, 272: 120718. |
49 | Qi X, Zhang JY, Yuan H, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats[J]. Int J Biol Sci, 2016, 12(7): 836-849. |
50 | Chen PF, Zheng L, Wang YY, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration[J]. Thera-nostics, 2019, 9(9): 2439-2459. |
51 | Su N, Hao YY, Wang F, et al. Mesenchymal stromal exosome-functionalized scaffolds induce innate and adaptive immunomodulatory responses toward tissue repair[J]. Sci Adv, 2021, 7(20): eabf7207. |
52 | Qin YH, Sun RX, Wu CL, et al. Exosome: a novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis[J]. Int J Mol Sci, 2016, 17(5): E712. |
53 | Diomede F, Gugliandolo A, Cardelli P, et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair[J]. Stem Cell Res Ther, 2018, 9(1): 104. |
54 | Xing X, Han S, Li Z, et al. Emerging role of exosomes in craniofacial and dental applications[J]. Theranostics, 2020, 10(19): 8648-8664. |
55 | Wu JY, Chen LL, Wang RF, et al. Exosomes secre-ted by stem cells from human exfoliated deciduous teeth promote alveolar bone defect repair through the regulation of angiogenesis and osteogenesis[J]. ACS Biomater Sci Eng, 2019, 5(7): 3561-3571. |
56 | Chen S, Tang YM, Liu YS, et al. Exosomes derived from miR-375-overexpressing human adipose me-senchymal stem cells promote bone regeneration[J]. Cell Prolif, 2019, 52(5): e12669. |
57 | Li WY, Zheng YF, Zhao XH, et al. Osteoinductive effects of free and immobilized bone forming peptide-1 on human adipose-derived stem cells[J]. PLoS One, 2016, 11(3): e0150294. |
58 | Swanson WB, Zhang Z, Xiu KM, et al. Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation[J]. Acta Biomater, 2020, 118: 215-232. |
59 | Zhang R, Ma J, Han J, et al. Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis[J]. Am J Transl Res, 2019, 11(10): 6275-6289. |
60 | de Jong OG, van Balkom BW, Schiffelers RM, et al. Extracellular vesicles: potential roles in regenerative medicine[J]. Front Immunol, 2014, 5: 608. |
61 | Bielajew BJ, Donahue RP, Espinosa MG, et al. Knee orthopedics as a template for the temporomandibular joint[J]. Cell Rep Med, 2021, 2(5): 100241. |
62 | Jiang SP, Guo WM, Tian GZ, et al. Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new hope[J]. Stem Cells Int, 2020, 2020: 5690252. |
63 | Huang JH, Huang ZW, Liang YJ, et al. 3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair[J]. Biomater Sci, 2021, 9(7): 2620-2630. |
64 | Zhou QF, Cai YZ, Lin XJ. The dual character of exosomes in osteoarthritis: antagonists and therapeutic agents[J]. Acta Biomater, 2020, 105: 15-25. |
65 | Yu SJ, Chen H, Gao B. Potential therapeutic effects of exosomes in regenerative endodontics[J]. Arch Oral Biol, 2020, 120: 104946. |
66 | Kim SG, Malek M, Sigurdsson A, et al. Regenerative endodontics: a comprehensive review[J]. Int Endod J, 2018, 51(12): 1367-1388. |
67 | Ivica A, Ghayor C, Zehnder M, et al. Pulp-derived exosomes in a fibrin-based regenerative root filling material[J]. J Clin Med, 2020, 9(2): E491. |
68 | Galler KM, Brandl FP, Kirchhof S, et al. Suitability of different natural and synthetic biomaterials for dental pulp tissue engineering[J]. Tissue Eng Part A, 2018, 24(3/4): 234-244. |
69 | Huang CC, Narayanan R, Alapati S, et al. Exosomes as biomimetic tools for stem cell differentiation: applications in dental pulp tissue regeneration[J]. Biomaterials, 2016, 111: 103-115. |
70 | Zhang SY, Thiebes AL, Kreimendahl F, et al. Extracellular vesicles-loaded fibrin gel supports rapid neovascularization for dental pulp regeneration[J]. Int J Mol Sci, 2020, 21(12): E4226. |
71 | Swanson WB, Gong T, Zhang Z, et al. Controlled release of odontogenic exosomes from a biodegra-dable vehicle mediates dentinogenesis as a novel biomimetic pulp capping therapy[J]. J Control Release, 2020, 324: 679-694. |
72 | Ivica A, Zehnder M, Weber FE. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in regenerative endodontics[J]. Eur Cell Mater, 2021, 41: 233-244. |
73 | Cortellini P, Tonetti MS. Clinical concepts for rege-nerative therapy in intrabony defects[J]. Periodontol 2000, 2015, 68(1): 282-307. |
74 | Yi GZ, Ma Y, Chen Y, et al. A review of the functions of matrix vesicles in periodontal tissues[J]. Stem Cells Dev, 2021, 30(4): 165-176. |
75 | Rosen PS, Reynolds MA, Bowers GM. The treatment of intrabony defects with bone grafts[J]. Perio-dontol 2000, 2000, 22: 88-103. |
76 | 杨雪婷, 杨波, 田卫东. 牙周组织工程新技术的研究进展[J]. 中华口腔医学杂志, 2018, 53(7): 490-494. |
Yang XT, Yang B, Tian WD. Development of new technology in periodontal tissue engineering[J]. Chin J Stomatol, 2018, 53(7): 490-494. | |
77 | Dissaux C, Wagner D, George D, et al. Mechanical impairment on alveolar bone graft: a literature review[J]. J Craniomaxillofac Surg, 2019, 47(1): 149-157. |
78 | Chew JRJ, Chuah SJ, Teo KYW, et al. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal rege-neration[J]. Acta Biomater, 2019, 89: 252-264. |
79 | Liu L, Guo SJ, Shi WW, et al. Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote periodontal regeneration[J]. Tissue Eng Part A, 2021, 27(13/14): 962-976. |
80 | Shen ZS, Kuang SH, Zhang Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a ma-crophage-dependent mechanism[J]. Bioact Mater, 2020, 5(4): 1113-1126. |