Int J Stomatol ›› 2023, Vol. 50 ›› Issue (3): 353-358.doi: 10.7518/gjkq.2023026

• Reviews • Previous Articles     Next Articles

Research progress on functionally graded membranes for guided bone regeneration

Xu Yanxue(),Fu Li.()   

  1. Dept. of Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China
  • Received:2022-09-08 Revised:2023-02-04 Online:2023-05-01 Published:2023-05-16
  • Contact: Li. Fu E-mail:xuyx20@mails.jlu.edu.cn;fuli1127@jlu.edu.cn
  • Supported by:
    Science and Technology Project of Jilin Province Financial Department(JCSZ2019378-7);Health Department Research Projects of Jilin Province(2019J023);General Program of Natural Science Foundation of Jilin Province(20200201592JC)

Abstract:

Guided bone regeneration (GBR) is a therapeutic modality to achieve bone tissue regeneration by using barrier membranes. As the key part of GBR, barrier membranes can seal the bone defect area, prevent non-osteogenic cell infiltration, and provide a benign environment for bone tissue regeneration. However, the effect of GBR membranes on the market is compromised by their limited bone regenerative potential and deficient antibacterial activity. To achieve the va-rious functional requirements of barrier membranes, many studies have proposed a novel membrane composed of multiple layers with different compositions and structures. This article reviews the research progress on functionally graded membranes and discussed its development directions to provide reference for further research on GBR membranes.

Key words: functionally graded membranes, guided bone regeneration, bone defects

CLC Number: 

  • R 783.1

TrendMD: 

Tab 1

Correlation study of functionally graded membranes for GBR"

参考文献膜材料制作方法膜设计性能缺点
[20]PLCL两步冷冻干燥法

双层设计

致密层:粗糙度为(0.40±0.05) μm

多孔层:粗糙度为(6.84±0.42) μm

缓慢的降解速率,延长屏障作用和促进骨再生作用的时间拉伸强度明显低于对照商用PLGA膜,但也被认为在可接受的范围内
[21]PLGA,nHA相转化法和静电纺丝法

双层结构

PLGA与不同比例的nHA构成不对称的相转化层和疏松的电纺层

电纺层:纤维直径为0.8~1.2 μm

对成纤维细胞有良好的屏障作用;优异的成骨活性大量nHA会降低膜的拉伸强度,破坏PLGA相的连续性
[22]PLGA,Gel,DEX@MSNs,DCH两步静电纺丝法

双层结构

松散的PLGA/Gel/ DEX@MSNs共轭层和致密的DCH/PLGA纳米纤维层

良好的骨诱导潜力,DCH的负载使膜具有有效抗菌能力膜的脆性增加,弹性模量下降
[23]PCL,BG,PU冷冻干燥法

双层结构

无孔PU层和PCL/BG多孔层

多孔层:孔径为22~65 mm,平均直径(37±22) nm

促愈合作用强于纯PU膜,体内实验证实了膜具有良好的生物学相容性未提及
[24]PLGA,MNBG溶剂浇铸法和静电纺丝法

双层结构

PLGA层和MNBG/PLGA纳米纤维层

添加MNBG赋予双层膜生物活性能够自发促进成骨分化40% MNBG/PLGA对细胞增殖有轻微的抑制作用
[25]HA,rGO两步电化学法

双层结构

二维rGO构成的致密层和三维rGO/HA构成的松散层

体内研究证实了膜增强了新骨的形成和矿化;二维rGO膜能够促进血管的生成未提及
[26]PLGA,PLA,Gel,nHA,MET多层静电纺丝技术

三层结构

上层:PLA/Gel+25% MET,纤维直径(960±560) nm

核心层:PLCL层周围包绕着PLCL/PLA/Gel三元混合层

下层:PLA/Gel+10% n-HAP,纤维直径为(650±440) nm

核心层的存在增强了膜的机械性能,n-HAP的加入增强了骨组织面中骨的形成,而MET药物的渗入阻止了软组织面上细菌的定植缺乏对膜的生物降解性和屏障作用的研究
[14]BG,CS,Pluronic F127电化学和冷冻干燥法结合

三层结构

上层:Pluronic F127/CS

中间层:Pluronic F127/CS+25% BG

下层:CS+50% BG,孔径为20~50 μm

具有良好的机械性能和促成骨活性。体内研究证实膜具有良好的生物学相容性未提及
[27]CS,PEO,Si-nHaP静电纺丝法和冷冻干燥法

双层结构

CS/PEO纤维层:孔径(1.8±0.5) μm,纤维尺寸为(107±22) nm

CS/Si-nHap多孔层:孔径177~191 μm,孔隙率为81%~85%

Si-nHap的掺入增强了膜的机械和物理性能,并可以通过浓度的调整控制生物降解性。对成骨细胞的生物活性具有诱导作用未提及
[28]PLGA,Gel,Cur,Asp静电纺丝法

双层结构

上层:负载PLGA-Asp纳米颗粒的胶原膜

下层:负载Cur的胶原膜

促进伤口愈合,持久的抗菌活性,体内实验证实了膜的促骨再生作用未提及
[29]PLGA,Gel,Cu@MSNs两步溶液电解法

双层结构

松散层:平均纤维直径为(10.2±0.5) μm,纤维间距为 400 μm

致密层:平均纤维直径为(96.5±11.8) nm

治疗性Cu2+以受控方式释放,赋予复合支架有效的成骨性能、抗菌性能、促血管生成性能。体内实验证实了支架的促骨再生作用未提及
[30]n-HA,CS,PA6两步法静电纺丝法和溶剂浇铸法相结合

双层结构

n-HA/PA6层和电纺PA6/CS层

电纺PA6/CS层:纤维直径为(160.95±48.28) nm

PA6/CS@n-HA/PA6双层膜:孔隙率和平均孔径分别为 36.90%和22.61 nm

优异的机械性能,抗拉强度和弹性模量优于单一的n-HA/PA6复合支架。同时,支架具有良好的骨传导性未提及
1 Elgali I, Omar O, Dahlin C, et al. Guided bone regeneration: materials and biological mechanisms revisited[J]. Eur J Oral Sci, 2017, 125(5): 315-337.
2 Aghaloo TL, Moy PK. Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement[J]. Int J Oral Maxillofac Implants, 2007, 22(): 49-70.
3 Geurs NC, Korostoff JM, Vassilopoulos PJ, et al. Clinical and histologic assessment of lateral alveolar ridge augmentation using a synthetic long-term bioabsorbable membrane and an allograft[J]. J Pe-riodontol, 2008, 79(7): 1133-1140.
4 Scantlebury TV. 1982-1992: a decade of technology development for guided tissue regeneration[J]. J Periodontol, 1993, 64(): 1129-1137.
5 Qasim SSB, Zafar MS, Niazi FH, et al. Functionally graded biomimetic biomaterials in dentistry: an evidence-based update[J]. J Biomater Sci Polym Ed, 2020, 31(9): 1144-1162.
6 Zhang X, Thomas V, Vohra YK. In vitro biodegradation of designed tubular scaffolds of electrospun protein/polyglyconate blend fibers[J]. J Biomed Mater Res B Appl Biomater, 2009, 89(1): 135-147.
7 Florjanski W, Orzeszek S, Olchowy A, et al. Modifications of polymeric membranes used in guided tissue and bone regeneration[J]. Polymers (Basel), 2019, 11(5): 782.
8 Garcia J, Dodge A, Luepke P, et al. Effect of membrane exposure on guided bone regeneration: a systematic review and meta-analysis[J]. Clin Oral Implants Res, 2018, 29(3): 328-338.
9 Wang HL, Boyapati L. “PASS” principles for predictable bone regeneration[J]. Implant Dent, 2006, 15(1): 8-17.
10 Ravoor J, Thangavel M, Elsen SR. Comprehensive review on design and manufacturing of bio-scaffolds for bone reconstruction[J]. ACS Appl Bio Mater, 2021, 4(12): 8129-8158.
11 Zhang KR, Gao HL, Pan XF, et al. Multifunctional bilayer nanocomposite guided bone regeneration membrane[J]. Matter, 2019, 1(3): 770-781.
12 de Moura NK, Martins EF, Oliveira RLMS, et al. Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2020, 117: 111327.
13 Zhuang Y, Lin KL, Yu HB. Advance of nano-composite electrospun fibers in periodontal regeneration[J]. Front Chem, 2019, 7: 495.
14 Shah AT, Zahid S, Ikram F, et al. Tri-layered functionally graded membrane for potential application in periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109812.
15 Chen YH, Tai HY, Fu E, et al. Guided bone regene-ration activity of different calcium phosphate/chitosan hybrid membranes[J]. Int J Biol Macromol, 2019, 126: 159-169.
16 Ho MH, Kuo PY, Hsieh HJ, et al. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods[J]. Biomaterials, 2004, 25(1): 129-138.
17 Hsieh CY, Tsai SP, Ho MH, et al. Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds[J]. Carbohydr Polym, 2007, 67(1): 124-132.
18 Qasim SB, Delaine-Smith RM, Fey T, et al. Freeze gelated porous membranes for periodontal tissue regeneration[J]. Acta Biomater, 2015, 23: 317-328.
19 唐元晖, 李沐霏, 林亚凯, 等. 相转化法制膜过程的模型与模拟研究进展[J]. 膜科学与技术, 2020, 40(1): 266-274.
Tang YH, Li MF, Lin YK, et al. A review on mode-ling and simulation work of membrane formation by phase inversion processes[J]. Membr Sci Technol, 2020, 40(1): 266-274.
20 Abe GL, Sasaki JI, Katata C, et al. Fabrication of novel poly(lactic acid/caprolactone) bilayer membrane for GBR application[J]. Dent Mater, 2020, 36(5): 626-634.
21 Fu L, Wang ZF, Dong SJ, et al. Bilayer poly(lactic-co-glycolic acid)/nano-hydroxyapatite membrane with barrier function and osteogenesis promotion for guided bone regeneration[J]. Materials (Basel), 2017, 10(3): 257.
22 Lian MF, Sun BB, Qiao ZG, et al. Bi-layered electrospun nanofibrous membrane with osteogenic and antibacterial properties for guided bone regeneration[J]. Colloids Surf B Biointerfaces, 2019, 176: 219-229.
23 Zahid S, Khan AS, Chaudhry AA, et al. Fabrication, in vitro and in vivo studies of bilayer composite membrane for periodontal guided tissue regeneration[J]. J Biomater Appl, 2019, 33(7): 967-978.
24 Li PY, Li YF, Kwok T, et al. A bi-layered membrane with micro-nano bioactive glass for guided bone regeneration[J]. Colloids Surf B Biointerfaces, 2021, 205: 111886.
25 Liu W, Dong XT, Qin H, et al. Three-dimensional porous reduced graphene oxide/hydroxyapatite mem-brane for guided bone regeneration[J]. Colloids Surf B Biointerfaces, 2021, 208: 112102.
26 Bottino MC, Thomas V, Janowski GM. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration[J]. Acta Biomater, 2011, 7(1): 216-224.
27 Tamburaci S, Tihminlioglu F. Development of Si doped nano hydroxyapatite reinforced bilayer chitosan nanocomposite barrier membranes for guided bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2021, 128: 112298.
28 Ghavimi MA, Bani Shahabadi A, Jarolmasjed S, et al. Nanofibrous asymmetric collagen/curcumin mem-brane containing aspirin-loaded PLGA nano-particles for guided bone regeneration[J]. Sci Rep, 2020, 10(1): 18200.
29 Lian MF, Han Y, Sun BB, et al. A multifunctional electrowritten bi-layered scaffold for guided bone regeneration[J]. Acta Biomater, 2020, 118: 83-99.
30 Niu XL, Wang LF, Xu MJ, et al. Electrospun polyamide-6/chitosan nanofibers reinforced nano-hydroxyapatite/polyamide-6 composite bilayered mem-branes for guided bone regeneration[J]. Carbohydr Polym, 2021, 260: 117769.
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[3] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[4] Zhao Wenjun,Chen Yu. Research progress on periodontal functional gradient membrane for guided tissue/bone regeneration [J]. Int J Stomatol, 2021, 48(4): 391-397.
[5] Ma Kai,Li Hao,Zhao Hongmei,Wang Yongliang,Liu Jie,Bai Na. Effects of inorganic bovine bone treated with low temperature argon-oxygen plasma on the adhesion, proliferation, and differentiation of MC3T3-E1 cells [J]. Int J Stomatol, 2020, 47(3): 278-285.
[6] Zhu Chenyou, Wei Shimin, Wang Yuanjing, Wu Yingying.. Research progress on macrophage in bone tissue repair [J]. Inter J Stomatol, 2018, 45(4): 444-448.
[7] Wang Yang, Shen Yuqin, Yu Wenwen, Sun Xinhua. Reasearch progress on modified mesoporous bioactive glasses for repairing maxillofacial bone defects [J]. Inter J Stomatol, 2018, 45(1): 32-35.
[8] Chen Hongliang, Zhao Chengchu, Zhao Feng, Zhong Ke, Sun Yong.. Domestic acellular dermal matrix in the treatment of guide bone regeneration the maxillofacial bone defect in planting area of oral performance evaluation [J]. Inter J Stomatol, 2013, 40(1): 33-36.
[9] WANG Ying1, QU Xiao-juan2. The application of regeneration of guided tissue and guided bone as well as its g [J]. Inter J Stomatol, 2008, 35(6): 636-636~638.
[10] WANG Shao- yi, JIANG Xin - quan, ZHANG Zhi - yuan. Resear ch advances of bone tissue engineer ing in stomatology [J]. Inter J Stomatol, 2008, 35(4): 433-433~436.
[11] GUI He- ming,DU Li- juan,HUANG Jie- ying.. Cur ative Effects and Exper ience on Tr eating Ser ious Per iodontitis with BAM Ar tificial Bone by Per iodontal Guided Bone Regener ation Technique [J]. Inter J Stomatol, 2007, 34(02): 149-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .