Int J Stomatol ›› 2024, Vol. 51 ›› Issue (1): 107-115.doi: 10.7518/gjkq.2024004

• Reviews • Previous Articles     Next Articles

Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery

Chang Xinnan(),Liu Lei()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Trauma and Orthopedic Wards, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2023-03-02 Revised:2023-08-01 Online:2024-01-01 Published:2024-01-10
  • Contact: Lei Liu;
  • Supported by:
    Applied Basic Research Project of Sichuan Provincial Science and Technology Program(2020YJ0278)


As a new generation of bone-implant materials, biodegradable magnesium-based materials show potential application in craniomaxillofacial surgery. Compared with traditional bone-implant materials, magnesium-based materials have excellent degradability, biocompatibility, mechanical properties, and osteogenic-promoting ability. The degradation of Mg implants leads to the production of magnesium ions, which have antiapoptosis and anti-inflammatory functions. Magnesium ions can also promote the healing of fractures and bone defects. Many studies have applied biodegradable magnesium-based materials to the internal fixation of craniomaxillofacial fractures, bone-substitute applications, guided bone regeneration, drug delivery, and implant surface coating. Results reveal that this kind of materials can provide stable support for bone healing and play a suitable role in osteogenic promoting. Magnesium-based materials also demonstrate potential in other fields, such as dental-tissue engineering and promotion of soft-tissue healing. All these findings indicate the importance of magnesium-based materials.

Key words: biodegradable magnesium-based material, internal fixation, guided bone regeneration, bone substitutes, drug delivery system, magnesium coating

CLC Number: 

  • R782.2

1 Ngo HX, Bai YP, Sha JJ, et al. A narrative review of u-HA/PLLA, a bioactive resorbable reconstruction material: applications in oral and maxillofacial surgery[J]. Materials, 2021, 15(1): 150.
2 On SW, Cho SW, Byun SH, et al. Bioabsorbable osteofixation materials for maxillofacial bone surgery: a review on polymers and magnesium-based mate-rials[J]. Biomedicines, 2020, 8(9): 300.
3 Prakasam M, Silvain JF, Largeteau A. Innovative high-pressure fabrication processes for porous biomaterials-a review[J]. Bioengineering (Basel), 2021, 8(11): 170.
4 Chen Y, Dou JH, Yu HJ, et al. Degradable magnesium-based alloys for biomedical applications: the role of critical alloying elements[J]. J Biomater Appl, 2019, 33(10): 1348-1372.
5 Hassan SF, Islam MT, Saheb N, et al. Magnesium for implants: a review on the effect of alloying elements on biocompatibility and properties[J]. Mate-rials, 2022, 15(16): 5669.
6 Höhn S, Virtanen S, Boccaccini AR. Protein adsorption on magnesium and its alloys: a review[J]. Appl Surf Sci, 2019, 464: 212-219.
7 Amukarimi S, Mozafari M. Biodegradable magnesium-based biomaterials: an overview of challenges and opportunities[J]. Med Comm, 2021, 2(2): 123-144.
8 Zhou H, Liang B, Jiang HT, et al. Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application[J]. J Magnes Alloys, 2021, 9(3): 779-804.
9 He W, Zhang H, Qiu JX. Osteogenic effects of bioabsorbable magnesium implant in rat mandibles and in vitro [J]. J Periodontol, 2021, 92(8): 1181-1191.
10 Kim SR, Lee KM, Kim JH, et al. Biocompatibility evaluation of peo-treated magnesium alloy implants placed in rabbit femur condyle notches and paravertebral muscles[J]. Biomater Res, 2022, 26(1): 29.
11 Liu C, Ren Z, Xu YD, et al. Biodegradable magnesium alloys developed as bone repair materials: a review[J]. Scanning, 2018, 2018: 9216314.
12 Kim BJ, Piao YL, Wufuer M, et al. Biocompatibility and efficiency of biodegradable magnesium-based plates and screws in the facial fracture model of beagles[J]. J Oral Maxillofac Surg, 2018, 76(5): 1055.e1-1055.e9.
13 Lin ZJ, Wu J, Qiao W, et al. Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in situ bone regeneration[J]. Biomaterials, 2018, 174: 1-16.
14 Zhu WY, Guo JX, Yang WF, et al. Biodegradable magnesium implant enhances angiogenesis and alleviates medication-related osteonecrosis of the jaw in rats[J]. J Orthop Translat, 2022, 33: 153-161.
15 Riviș M, Roi C, Roi A, et al. The implications of titanium alloys applied in maxillofacial osteosynthesis[J]. Appl Sci, 2020, 10(9): 3203.
16 Riaz U, Shabib I, Haider W. The current trends of Mg alloys in biomedical applications-a review[J]. J Biomed Mater Res B Appl Biomater, 2019, 107(6): 1970-1996.
17 Reddy L, Lee D, Vincent A, et al. Secondary ma-nagement of mandible fractures[J]. Facial Plast Surg, 2019, 35(6): 627-632.
18 Naujokat H, Ruff CB, Klüter T, et al. Influence of surface modifications on the degradation of standard-sized magnesium plates and healing of mandi-bular osteotomies in miniature pigs[J]. Int J Oral Maxillofac Surg, 2020, 49(2): 272-283.
19 Imwinkelried T, Beck S, Schaller B. Pre-clinical testing of human size magnesium implants in miniature pigs: implant degradation and bone fracture healing at multiple implantation sites[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108: 110389.
20 Abd Al Razik Mohammed A. Biomechanical evaluation of magnesium plates for management of mandibular angle fracture[J]. Br J Oral Maxillofac Surg, 2022, 60(6): 785-790.
21 Leonhardt H, Franke A, McLeod NMH, et al. Fixation of fractures of the condylar head of the mandible with a new magnesium-alloy biodegradable cannulated headless bone screw[J]. Br J Oral Maxillofac Surg, 2017, 55(6): 623-625.
22 Leonhardt H, Ziegler A, Lauer G, et al. Osteosynthesis of the mandibular condyle with magnesium-based biodegradable headless compression screws show good clinical results during a 1-year follow-up pe-riod[J]. J Oral Maxillofac Surg, 2021, 79(3): 637-643.
23 Kozakiewicz M, Gabryelczak I, Bielecki-Kowalski B. Clinical evaluation of magnesium alloy osteosynthesis in the mandibular head[J]. Materials, 2022, 15(3): 711.
24 Kozakiewicz M, Gabryelczak I. Bone union quality after fracture fixation of mandibular head with compression magnesium screws[J]. Materials, 2022, 15(6): 2230.
25 Kozakiewicz M. Change in pull-out force during resorption of magnesium compression screws for osteosynthesis of mandibular condylar fractures[J]. Materials, 2021, 14(2): 237.
26 Wang ZX, Zhang JW, Ye F, et al. Properties of micro-arc oxidation coating fabricated on magnesium under two steps current-decreasing mode[J]. Front Mater, 2020, 7: 261.
27 Uddin M, Hall C, Santos V. Fabrication, characterisation and corrosion of HA coated AZ31B Mg implant material: effect of electrodeposition current density[J]. Surf Coat Technol, 2020, 385: 125363.
28 Saberi A, Bakhsheshi-Rad HR, Abazari S, et al. A comprehensive review on surface modifications of biodegradable magnesium-based implant alloy: polymer coatings opportunities and challenges[J]. Coatings, 2021, 11(7): 747.
29 Chen LX, Sheng YY, Zhou HY, et al. Influence of a MAO+PLGA coating on biocorrosion and stress corrosion cracking behavior of a magnesium alloy in a physiological environment[J]. Corros Sci, 2019, 148: 134-143.
30 Tian L, Sheng YF, Huang L, et al. An innovative Mg/Ti hybrid fixation system developed for fracture fixation and healing enhancement at load-bearing skeletal site[J]. Biomaterials, 2018, 180: 173-183.
31 Porto DE, da Silva Barbirato D, Cavalcanti AL, et al. Pattern of oral and maxillofacial trauma and associated factors: an 8-year prospective study[J]. Dent Traumatol, 2022, 38(5): 356-366.
32 Schaller B, Matthias Burkhard JP, Chagnon M, et al. Fracture healing and bone remodeling with human standard-sized magnesium versus polylactide-co-glycolide plate and screw systems using a mini-swine craniomaxillofacial osteotomy fixation model[J]. J Oral Maxillofac Surg, 2018, 76(10): 2138-2150.
33 Byun SH, Lim HK, Cheon KH, et al. Biodegradable magnesium alloy (WE43) in bone-fixation plate and screw[J]. J Biomed Mater Res B Appl Biomater, 2020, 108(6): 2505-2512.
34 Torroni A, Xiang CC, Witek L, et al. Biocompatibility and degradation properties of WE43 Mg alloys with and without heat treatment: in vivo evaluation and comparison in a cranial bone sheep model[J]. J Craniomaxillofac Surg, 2017, 45(12): 2075-2083.
35 Naujokat H, Seitz JM, Açil Y, et al. Osteosynthesis of a cranio-osteoplasty with a biodegradable magnesium plate system in miniature pigs[J]. Acta Biomater, 2017, 62: 434-445.
36 Lee JY, Lee JW, Pang KM, et al. Biomechanical evaluation of magnesium-based resorbable metallic screw system in a bilateral sagittal split ramus osteo-tomy model using three-dimensional finite element analysis[J]. J Oral Maxillofac Surg, 2014, 72(2): 402.e1-402.e13.
37 Lee JH, Han HS, Kim YC, et al. Stability of biodegradable metal (Mg-Ca-Zn alloy) screws compared with absorbable polymer and titanium screws for sagittal split ramus osteotomy of the mandible using the finite element analysis model[J]. J Craniomaxillofac Surg, 2017, 45(10): 1639-1646.
38 Martín-del-Campo M, Fernández-Villa D, Cabrera-Rueda G, et al. Antibacterial bio-based polymers for cranio-maxillofacial regeneration applications[J]. Appl Sci, 2020, 10(23): 8371.
39 Rider P, Kačarević ŽP, Elad A, et al. Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery[J]. Bioact Mater, 2022, 14: 152-168.
40 Zhao MY, Liu GQ, Li Y, et al. Degradation beha-vior, transport mechanism and osteogenic activity of Mg-Zn-RE alloy membranes in critical-sized rat calvarial defects[J]. Coatings, 2020, 10(5): 496.
41 Guo Y, Yu YJ, Han LP, et al. Biocompatibility and osteogenic activity of guided bone regeneration membrane based on chitosan-coated magnesium alloy[J]. Mater Sci Eng C Mater Biol Appl, 2019, 100: 226-235.
42 Yan ZY, Zhu JH, Liu GQ, et al. Feasibility and efficacy of a degradable magnesium-alloy GBR membrane for bone augmentation in a distal bone-defect model in Beagle dogs[J]. Bioinorg Chem Appl, 2022, 2022: 4941635.
43 Zhang HY, Jiang HB, Kim JE, et al. Bioresorbable magnesium-reinforced PLA membrane for guided bone/tissue regeneration[J]. J Mech Behav Biomed Mater, 2020, 112: 104061.
44 Brown A, Zaky S, Ray H Jr, et al. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction[J]. Acta Biomater, 2015, 11: 543-553.
45 Wang FL, Xia DD, Wang SY, et al. Photocrosslin-kable Col/PCL/Mg composite membrane providing spatiotemporal maintenance and positive osteogene-tic effects during guided bone regeneration[J]. Bioact Mater, 2022, 13: 53-63.
46 Pajor K, Pajchel L, Kolmas J. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology-a review[J]. Materials (Basel), 2019, 12(17): 2683.
47 Deng LQ, Li DH, Yang ZY, et al. Repair of the calvarial defect in goat model using magnesium-doped porous hydroxyapatite combined with recombinant human bone morphogenetic protein-2[J]. Biomed Mater Eng, 2017, 28(4): 361-377.
48 Salamanca E, Pan YH, Sun YS, et al. Magnesium modified β-tricalcium phosphate induces cell osteogenic differentiation in vitro and bone regeneration in vivo [J]. Int J Mol Sci, 2022, 23(3): 1717.
49 Felice P, Lizio G, Marchetti C, et al. Magnesium-substituted hydroxyapatite grafting using the vertical inlay technique[J]. Int J Periodontics Restorative Dent, 2013, 33(3): 355-363.
50 Grigolato R, Pizzi N, Brotto MC, et al. Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect[J]. Int J Clin Exp Med, 2015, 8(1): 281-288.
51 Barbanti Bròdano G, Griffoni C, Nataloni A, et al. Biomaterials as bone graft substitutes for spine surgery: from preclinical results to clinical study[J]. J Biol Regul Homeost Agents, 2017, 31(4 ): 167-181.
52 Dallari D, Savarino L, Albisinni U, et al. A prospective, randomised, controlled trial using a Mg-hydroxyapatite-demineralized bone matrix nanocomposite in tibial osteotomy[J]. Biomaterials, 2012, 33(1): 72-79.
53 Kanter B, Vikman A, Brückner T, et al. Bone rege-neration capacity of magnesium phosphate cements in a large animal model[J]. Acta Biomater, 2018, 69: 352-361.
54 Gu X, Li Y, Qi C, et al. Biodegradable magnesium phosphates in biomedical applications[J]. J Mater Chem B, 2022, 10(13): 2097-2112.
55 Xia DD, Yang F, Zheng YF, et al. Research status of biodegradable metals designed for oral and maxillofacial applications: a review[J]. Bioact Mater, 2021, 6(11): 4186-4208.
56 Bakhsheshi-Rad HR, Hamzah E, Staiger MP, et al. Drug release, cytocompatibility, bioactivity, and antibacterial activity of doxycycline loaded Mg-Ca-TiO2 composite scaffold[J]. Mater Des, 2018, 139: 212-221.
57 Dayaghi E, Bakhsheshi-Rad HR, Hamzah E, et al. Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: in vitro cell biology and antibacterial activity assessment[J]. Mater Sci Eng C Mater Biol Appl, 2019, 102: 53-65.
58 Bigham A, Hassanzadeh-Tabrizi SA, Khamsehashari A, et al. Surfactant-assisted sol-gel synthesis and characterization of hierarchical nanoporous merwinite with controllable drug release[J]. J Sol Gel Sci Technol, 2018, 87(3): 618-625.
59 Almehmadi AH. Effect of magnesium-based coa-tings on titanium or zirconia substrates on bone regeneration and implant osseointegration-a systema-tic review[J]. Front Mater, 2021, 8: 754697.
60 Gao P, Fan B, Yu XM, et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application[J]. Bioact Mater, 2020, 5(3): 680-693.
61 Bai Y, Wang L, Zhao LS, et al. Antibacterial and antioxidant effects of magnesium alloy on titanium dental implants[J]. Comput Math Methods Med, 2022, 2022: 6537676.
62 Li XD, Wang MY, Zhang WJ, et al. A magnesium-incorporated nanoporous titanium coating for rapid osseointegration[J]. Int J Nanomedicine, 2020, 15: 6593-6603.
63 Shen XK, Zhang YY, Ma PP, et al. Fabrication of magnesium/zinc-metal organic framework on tita-nium implants to inhibit bacterial infection and promote bone regeneration[J]. Biomaterials, 2019, 212: 1-16.
64 Kong YY, Hu XL, Zhong YQ, et al. Magnesium-enriched microenvironment promotes odontogenic differentiation in human dental pulp stem cells by activating ERK/BMP2/Smads signaling[J]. Stem Cell Res Ther, 2019, 10(1): 378.
65 Zheng JM, Kong YY, Li YY, et al. MagT1 regulated the odontogenic differentiation of BMMSCs induced byTGC-CM via ERK signaling pathway[J]. Stem Cell Res Ther, 2019, 10(1): 48.
66 Won J, Kim JH, Oh SB. Molecular expression of Mg2+ regulator TRPM7 and CNNM4 in rat odontoblasts[J]. Arch Oral Biol, 2018, 96: 182-188.
67 Salem RM, Zhang C, Chou LS. Effect of magnesium on dentinogenesis of human dental pulp cells[J]. Int J Biomater, 2021, 2021: 6567455.
68 Zhu Y, Zhang CN, Gu YX, et al. The responses of human gingival fibroblasts to magnesium-doped titanium[J]. J Biomed Mater Res A, 2020, 108(2): 267-278.
69 Peng WZ, Ren SS, Zhang YB, et al. MgO nanoparticles-incorporated PCL/gelatin-derived coaxial electrospinning nanocellulose membranes for periodontal tissue regeneration[J]. Front Bioeng Biotechnol, 2021, 9: 668428.
70 Razavi M, Huang Y. Assessment of magnesium-based biomaterials: from bench to clinic[J]. Biomater Sci, 2019, 7(6): 2241-2263.
71 Wu S, Jang YS, Kim YK, et al. Surface modification of pure magnesium mesh for guided bone regeneration: in vivo evaluation of rat calvarial defect[J]. Materials, 2019, 12(17): 2684.
72 Mohan Sathyaraj P, Ravichandran K, Tsn SN. Controlling the rate of degradation of Mg using magnesium fluoride and magnesium fluoride-magnesium phosphate duplex coatings[J]. J Magnes Alloys, 2022, 10(1): 295-312.
73 Peng W, Chen JX, Shan XF, et al. Mg-based absorba-ble membrane for guided bone regeneration (GBR): a pilot study[J]. Rare Met, 2019, 38(6): 577-587.
74 Si JW, Shen HZ, Miao HW, et al. In vitro and in vivo evaluations of Mg-Zn-Gd alloy membrane on guided bone regeneration for rabbit calvarial defect[J]. J Magnes Alloys, 2021, 9(1): 281-291.
75 Wu S, Jang YS, Lee MH. Enhancement of bone regeneration on calcium-phosphate-coated magnesium mesh: using the rat calvarial model[J]. Front Bioeng Biotechnol, 2021, 9: 652334.
76 Gao YL, Liu Y, Song XY. Plasma-sprayed hydroxyapatite coating for improved corrosion resistance and bioactivity of magnesium alloy[J]. J Therm Spray Technol, 2018, 27(8): 1381-1387.
77 Yang RR, Chen KY, Wen SF, et al. Enhanced strength and hardness of AS41 magnesium alloy fa-bricated by selective laser melting[J]. Materials, 2022, 15(17): 5863.
78 Bryła K, Horky J, Krystian M, et al. Microstructure, mechanical properties, and degradation of Mg-Ag alloy after equal-channel angular pressing[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110543.
79 Xu LM, Liu XW, Sun K, et al. Corrosion behavior in magnesium-based alloys for biomedical applications[J]. Materials, 2022, 15(7): 2613.
[1] Wang Jiaxi,Mingyue Lü,Yuan Quan. Research progress on sticky bone in oral tissue regeneration [J]. Int J Stomatol, 2023, 50(5): 594-602.
[2] Xu Yanxue,Fu Li.. Research progress on functionally graded membranes for guided bone regeneration [J]. Int J Stomatol, 2023, 50(3): 353-358.
[3] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[4] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[5] Zhao Wenjun,Chen Yu. Research progress on periodontal functional gradient membrane for guided tissue/bone regeneration [J]. Int J Stomatol, 2021, 48(4): 391-397.
[6] Ma Kai,Li Hao,Zhao Hongmei,Wang Yongliang,Liu Jie,Bai Na. Effects of inorganic bovine bone treated with low temperature argon-oxygen plasma on the adhesion, proliferation, and differentiation of MC3T3-E1 cells [J]. Int J Stomatol, 2020, 47(3): 278-285.
[7] Zhu Chenyou, Wei Shimin, Wang Yuanjing, Wu Yingying.. Research progress on macrophage in bone tissue repair [J]. Inter J Stomatol, 2018, 45(4): 444-448.
[8] Zhang Yixin, Li Lei. Development of calcium phosphate scaffolds as drug delivery system in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 346-350.
[9] Wang Xiaona, Zhao Jinghui, Chu Shunli, Zhou Yanmin. Effect of bone substitutes in oral implants on bone formation [J]. Inter J Stomatol, 2016, 43(1): 113-.
[10] Yang Junjun1,2, Cheng Zhigang2, Song Guangtai1.. Application of the dental drug delivery system in stomatology [J]. Inter J Stomatol, 2014, 41(2): 236-239.
[11] Chen Hongliang, Zhao Chengchu, Zhao Feng, Zhong Ke, Sun Yong.. Domestic acellular dermal matrix in the treatment of guide bone regeneration the maxillofacial bone defect in planting area of oral performance evaluation [J]. Inter J Stomatol, 2013, 40(1): 33-36.
[12] Chen Zhibiao, Xin Pengfei, Xu Bing.. Research progress on maxillofacial blast injury [J]. Inter J Stomatol, 2012, 39(2): 214-216.
[13] LU Qun1, YANG Xian-fang2.. Clinical observation on the restoration treatment for 38 cases of molar vertical fractures [J]. Inter J Stomatol, 2011, 38(2): 131-133.
[14] WANG Ying1, QU Xiao-juan2. The application of regeneration of guided tissue and guided bone as well as its g [J]. Inter J Stomatol, 2008, 35(6): 636-636~638.
[15] WU Xuan1, MA Wei- dong2, LIU Hong- chen1. Implantable drug delivery system of insulin [J]. Inter J Stomatol, 2008, 35(4): 430-430~432.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .