Int J Stomatol ›› 2024, Vol. 51 ›› Issue (1): 107-115.doi: 10.7518/gjkq.2024004
• Reviews • Previous Articles Next Articles
CLC Number:
1 | Ngo HX, Bai YP, Sha JJ, et al. A narrative review of u-HA/PLLA, a bioactive resorbable reconstruction material: applications in oral and maxillofacial surgery[J]. Materials, 2021, 15(1): 150. |
2 | On SW, Cho SW, Byun SH, et al. Bioabsorbable osteofixation materials for maxillofacial bone surgery: a review on polymers and magnesium-based mate-rials[J]. Biomedicines, 2020, 8(9): 300. |
3 | Prakasam M, Silvain JF, Largeteau A. Innovative high-pressure fabrication processes for porous biomaterials-a review[J]. Bioengineering (Basel), 2021, 8(11): 170. |
4 | Chen Y, Dou JH, Yu HJ, et al. Degradable magnesium-based alloys for biomedical applications: the role of critical alloying elements[J]. J Biomater Appl, 2019, 33(10): 1348-1372. |
5 | Hassan SF, Islam MT, Saheb N, et al. Magnesium for implants: a review on the effect of alloying elements on biocompatibility and properties[J]. Mate-rials, 2022, 15(16): 5669. |
6 | Höhn S, Virtanen S, Boccaccini AR. Protein adsorption on magnesium and its alloys: a review[J]. Appl Surf Sci, 2019, 464: 212-219. |
7 | Amukarimi S, Mozafari M. Biodegradable magnesium-based biomaterials: an overview of challenges and opportunities[J]. Med Comm, 2021, 2(2): 123-144. |
8 | Zhou H, Liang B, Jiang HT, et al. Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application[J]. J Magnes Alloys, 2021, 9(3): 779-804. |
9 | He W, Zhang H, Qiu JX. Osteogenic effects of bioabsorbable magnesium implant in rat mandibles and in vitro [J]. J Periodontol, 2021, 92(8): 1181-1191. |
10 | Kim SR, Lee KM, Kim JH, et al. Biocompatibility evaluation of peo-treated magnesium alloy implants placed in rabbit femur condyle notches and paravertebral muscles[J]. Biomater Res, 2022, 26(1): 29. |
11 | Liu C, Ren Z, Xu YD, et al. Biodegradable magnesium alloys developed as bone repair materials: a review[J]. Scanning, 2018, 2018: 9216314. |
12 | Kim BJ, Piao YL, Wufuer M, et al. Biocompatibility and efficiency of biodegradable magnesium-based plates and screws in the facial fracture model of beagles[J]. J Oral Maxillofac Surg, 2018, 76(5): 1055.e1-1055.e9. |
13 | Lin ZJ, Wu J, Qiao W, et al. Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in situ bone regeneration[J]. Biomaterials, 2018, 174: 1-16. |
14 | Zhu WY, Guo JX, Yang WF, et al. Biodegradable magnesium implant enhances angiogenesis and alleviates medication-related osteonecrosis of the jaw in rats[J]. J Orthop Translat, 2022, 33: 153-161. |
15 | Riviș M, Roi C, Roi A, et al. The implications of titanium alloys applied in maxillofacial osteosynthesis[J]. Appl Sci, 2020, 10(9): 3203. |
16 | Riaz U, Shabib I, Haider W. The current trends of Mg alloys in biomedical applications-a review[J]. J Biomed Mater Res B Appl Biomater, 2019, 107(6): 1970-1996. |
17 | Reddy L, Lee D, Vincent A, et al. Secondary ma-nagement of mandible fractures[J]. Facial Plast Surg, 2019, 35(6): 627-632. |
18 | Naujokat H, Ruff CB, Klüter T, et al. Influence of surface modifications on the degradation of standard-sized magnesium plates and healing of mandi-bular osteotomies in miniature pigs[J]. Int J Oral Maxillofac Surg, 2020, 49(2): 272-283. |
19 | Imwinkelried T, Beck S, Schaller B. Pre-clinical testing of human size magnesium implants in miniature pigs: implant degradation and bone fracture healing at multiple implantation sites[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108: 110389. |
20 | Abd Al Razik Mohammed A. Biomechanical evaluation of magnesium plates for management of mandibular angle fracture[J]. Br J Oral Maxillofac Surg, 2022, 60(6): 785-790. |
21 | Leonhardt H, Franke A, McLeod NMH, et al. Fixation of fractures of the condylar head of the mandible with a new magnesium-alloy biodegradable cannulated headless bone screw[J]. Br J Oral Maxillofac Surg, 2017, 55(6): 623-625. |
22 | Leonhardt H, Ziegler A, Lauer G, et al. Osteosynthesis of the mandibular condyle with magnesium-based biodegradable headless compression screws show good clinical results during a 1-year follow-up pe-riod[J]. J Oral Maxillofac Surg, 2021, 79(3): 637-643. |
23 | Kozakiewicz M, Gabryelczak I, Bielecki-Kowalski B. Clinical evaluation of magnesium alloy osteosynthesis in the mandibular head[J]. Materials, 2022, 15(3): 711. |
24 | Kozakiewicz M, Gabryelczak I. Bone union quality after fracture fixation of mandibular head with compression magnesium screws[J]. Materials, 2022, 15(6): 2230. |
25 | Kozakiewicz M. Change in pull-out force during resorption of magnesium compression screws for osteosynthesis of mandibular condylar fractures[J]. Materials, 2021, 14(2): 237. |
26 | Wang ZX, Zhang JW, Ye F, et al. Properties of micro-arc oxidation coating fabricated on magnesium under two steps current-decreasing mode[J]. Front Mater, 2020, 7: 261. |
27 | Uddin M, Hall C, Santos V. Fabrication, characterisation and corrosion of HA coated AZ31B Mg implant material: effect of electrodeposition current density[J]. Surf Coat Technol, 2020, 385: 125363. |
28 | Saberi A, Bakhsheshi-Rad HR, Abazari S, et al. A comprehensive review on surface modifications of biodegradable magnesium-based implant alloy: polymer coatings opportunities and challenges[J]. Coatings, 2021, 11(7): 747. |
29 | Chen LX, Sheng YY, Zhou HY, et al. Influence of a MAO+PLGA coating on biocorrosion and stress corrosion cracking behavior of a magnesium alloy in a physiological environment[J]. Corros Sci, 2019, 148: 134-143. |
30 | Tian L, Sheng YF, Huang L, et al. An innovative Mg/Ti hybrid fixation system developed for fracture fixation and healing enhancement at load-bearing skeletal site[J]. Biomaterials, 2018, 180: 173-183. |
31 | Porto DE, da Silva Barbirato D, Cavalcanti AL, et al. Pattern of oral and maxillofacial trauma and associated factors: an 8-year prospective study[J]. Dent Traumatol, 2022, 38(5): 356-366. |
32 | Schaller B, Matthias Burkhard JP, Chagnon M, et al. Fracture healing and bone remodeling with human standard-sized magnesium versus polylactide-co-glycolide plate and screw systems using a mini-swine craniomaxillofacial osteotomy fixation model[J]. J Oral Maxillofac Surg, 2018, 76(10): 2138-2150. |
33 | Byun SH, Lim HK, Cheon KH, et al. Biodegradable magnesium alloy (WE43) in bone-fixation plate and screw[J]. J Biomed Mater Res B Appl Biomater, 2020, 108(6): 2505-2512. |
34 | Torroni A, Xiang CC, Witek L, et al. Biocompatibility and degradation properties of WE43 Mg alloys with and without heat treatment: in vivo evaluation and comparison in a cranial bone sheep model[J]. J Craniomaxillofac Surg, 2017, 45(12): 2075-2083. |
35 | Naujokat H, Seitz JM, Açil Y, et al. Osteosynthesis of a cranio-osteoplasty with a biodegradable magnesium plate system in miniature pigs[J]. Acta Biomater, 2017, 62: 434-445. |
36 | Lee JY, Lee JW, Pang KM, et al. Biomechanical evaluation of magnesium-based resorbable metallic screw system in a bilateral sagittal split ramus osteo-tomy model using three-dimensional finite element analysis[J]. J Oral Maxillofac Surg, 2014, 72(2): 402.e1-402.e13. |
37 | Lee JH, Han HS, Kim YC, et al. Stability of biodegradable metal (Mg-Ca-Zn alloy) screws compared with absorbable polymer and titanium screws for sagittal split ramus osteotomy of the mandible using the finite element analysis model[J]. J Craniomaxillofac Surg, 2017, 45(10): 1639-1646. |
38 | Martín-del-Campo M, Fernández-Villa D, Cabrera-Rueda G, et al. Antibacterial bio-based polymers for cranio-maxillofacial regeneration applications[J]. Appl Sci, 2020, 10(23): 8371. |
39 | Rider P, Kačarević ŽP, Elad A, et al. Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery[J]. Bioact Mater, 2022, 14: 152-168. |
40 | Zhao MY, Liu GQ, Li Y, et al. Degradation beha-vior, transport mechanism and osteogenic activity of Mg-Zn-RE alloy membranes in critical-sized rat calvarial defects[J]. Coatings, 2020, 10(5): 496. |
41 | Guo Y, Yu YJ, Han LP, et al. Biocompatibility and osteogenic activity of guided bone regeneration membrane based on chitosan-coated magnesium alloy[J]. Mater Sci Eng C Mater Biol Appl, 2019, 100: 226-235. |
42 | Yan ZY, Zhu JH, Liu GQ, et al. Feasibility and efficacy of a degradable magnesium-alloy GBR membrane for bone augmentation in a distal bone-defect model in Beagle dogs[J]. Bioinorg Chem Appl, 2022, 2022: 4941635. |
43 | Zhang HY, Jiang HB, Kim JE, et al. Bioresorbable magnesium-reinforced PLA membrane for guided bone/tissue regeneration[J]. J Mech Behav Biomed Mater, 2020, 112: 104061. |
44 | Brown A, Zaky S, Ray H Jr, et al. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction[J]. Acta Biomater, 2015, 11: 543-553. |
45 | Wang FL, Xia DD, Wang SY, et al. Photocrosslin-kable Col/PCL/Mg composite membrane providing spatiotemporal maintenance and positive osteogene-tic effects during guided bone regeneration[J]. Bioact Mater, 2022, 13: 53-63. |
46 | Pajor K, Pajchel L, Kolmas J. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology-a review[J]. Materials (Basel), 2019, 12(17): 2683. |
47 | Deng LQ, Li DH, Yang ZY, et al. Repair of the calvarial defect in goat model using magnesium-doped porous hydroxyapatite combined with recombinant human bone morphogenetic protein-2[J]. Biomed Mater Eng, 2017, 28(4): 361-377. |
48 | Salamanca E, Pan YH, Sun YS, et al. Magnesium modified β-tricalcium phosphate induces cell osteogenic differentiation in vitro and bone regeneration in vivo [J]. Int J Mol Sci, 2022, 23(3): 1717. |
49 | Felice P, Lizio G, Marchetti C, et al. Magnesium-substituted hydroxyapatite grafting using the vertical inlay technique[J]. Int J Periodontics Restorative Dent, 2013, 33(3): 355-363. |
50 | Grigolato R, Pizzi N, Brotto MC, et al. Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect[J]. Int J Clin Exp Med, 2015, 8(1): 281-288. |
51 | Barbanti Bròdano G, Griffoni C, Nataloni A, et al. Biomaterials as bone graft substitutes for spine surgery: from preclinical results to clinical study[J]. J Biol Regul Homeost Agents, 2017, 31(4 ): 167-181. |
52 | Dallari D, Savarino L, Albisinni U, et al. A prospective, randomised, controlled trial using a Mg-hydroxyapatite-demineralized bone matrix nanocomposite in tibial osteotomy[J]. Biomaterials, 2012, 33(1): 72-79. |
53 | Kanter B, Vikman A, Brückner T, et al. Bone rege-neration capacity of magnesium phosphate cements in a large animal model[J]. Acta Biomater, 2018, 69: 352-361. |
54 | Gu X, Li Y, Qi C, et al. Biodegradable magnesium phosphates in biomedical applications[J]. J Mater Chem B, 2022, 10(13): 2097-2112. |
55 | Xia DD, Yang F, Zheng YF, et al. Research status of biodegradable metals designed for oral and maxillofacial applications: a review[J]. Bioact Mater, 2021, 6(11): 4186-4208. |
56 | Bakhsheshi-Rad HR, Hamzah E, Staiger MP, et al. Drug release, cytocompatibility, bioactivity, and antibacterial activity of doxycycline loaded Mg-Ca-TiO2 composite scaffold[J]. Mater Des, 2018, 139: 212-221. |
57 | Dayaghi E, Bakhsheshi-Rad HR, Hamzah E, et al. Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: in vitro cell biology and antibacterial activity assessment[J]. Mater Sci Eng C Mater Biol Appl, 2019, 102: 53-65. |
58 | Bigham A, Hassanzadeh-Tabrizi SA, Khamsehashari A, et al. Surfactant-assisted sol-gel synthesis and characterization of hierarchical nanoporous merwinite with controllable drug release[J]. J Sol Gel Sci Technol, 2018, 87(3): 618-625. |
59 | Almehmadi AH. Effect of magnesium-based coa-tings on titanium or zirconia substrates on bone regeneration and implant osseointegration-a systema-tic review[J]. Front Mater, 2021, 8: 754697. |
60 | Gao P, Fan B, Yu XM, et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application[J]. Bioact Mater, 2020, 5(3): 680-693. |
61 | Bai Y, Wang L, Zhao LS, et al. Antibacterial and antioxidant effects of magnesium alloy on titanium dental implants[J]. Comput Math Methods Med, 2022, 2022: 6537676. |
62 | Li XD, Wang MY, Zhang WJ, et al. A magnesium-incorporated nanoporous titanium coating for rapid osseointegration[J]. Int J Nanomedicine, 2020, 15: 6593-6603. |
63 | Shen XK, Zhang YY, Ma PP, et al. Fabrication of magnesium/zinc-metal organic framework on tita-nium implants to inhibit bacterial infection and promote bone regeneration[J]. Biomaterials, 2019, 212: 1-16. |
64 | Kong YY, Hu XL, Zhong YQ, et al. Magnesium-enriched microenvironment promotes odontogenic differentiation in human dental pulp stem cells by activating ERK/BMP2/Smads signaling[J]. Stem Cell Res Ther, 2019, 10(1): 378. |
65 | Zheng JM, Kong YY, Li YY, et al. MagT1 regulated the odontogenic differentiation of BMMSCs induced byTGC-CM via ERK signaling pathway[J]. Stem Cell Res Ther, 2019, 10(1): 48. |
66 | Won J, Kim JH, Oh SB. Molecular expression of Mg2+ regulator TRPM7 and CNNM4 in rat odontoblasts[J]. Arch Oral Biol, 2018, 96: 182-188. |
67 | Salem RM, Zhang C, Chou LS. Effect of magnesium on dentinogenesis of human dental pulp cells[J]. Int J Biomater, 2021, 2021: 6567455. |
68 | Zhu Y, Zhang CN, Gu YX, et al. The responses of human gingival fibroblasts to magnesium-doped titanium[J]. J Biomed Mater Res A, 2020, 108(2): 267-278. |
69 | Peng WZ, Ren SS, Zhang YB, et al. MgO nanoparticles-incorporated PCL/gelatin-derived coaxial electrospinning nanocellulose membranes for periodontal tissue regeneration[J]. Front Bioeng Biotechnol, 2021, 9: 668428. |
70 | Razavi M, Huang Y. Assessment of magnesium-based biomaterials: from bench to clinic[J]. Biomater Sci, 2019, 7(6): 2241-2263. |
71 | Wu S, Jang YS, Kim YK, et al. Surface modification of pure magnesium mesh for guided bone regeneration: in vivo evaluation of rat calvarial defect[J]. Materials, 2019, 12(17): 2684. |
72 | Mohan Sathyaraj P, Ravichandran K, Tsn SN. Controlling the rate of degradation of Mg using magnesium fluoride and magnesium fluoride-magnesium phosphate duplex coatings[J]. J Magnes Alloys, 2022, 10(1): 295-312. |
73 | Peng W, Chen JX, Shan XF, et al. Mg-based absorba-ble membrane for guided bone regeneration (GBR): a pilot study[J]. Rare Met, 2019, 38(6): 577-587. |
74 | Si JW, Shen HZ, Miao HW, et al. In vitro and in vivo evaluations of Mg-Zn-Gd alloy membrane on guided bone regeneration for rabbit calvarial defect[J]. J Magnes Alloys, 2021, 9(1): 281-291. |
75 | Wu S, Jang YS, Lee MH. Enhancement of bone regeneration on calcium-phosphate-coated magnesium mesh: using the rat calvarial model[J]. Front Bioeng Biotechnol, 2021, 9: 652334. |
76 | Gao YL, Liu Y, Song XY. Plasma-sprayed hydroxyapatite coating for improved corrosion resistance and bioactivity of magnesium alloy[J]. J Therm Spray Technol, 2018, 27(8): 1381-1387. |
77 | Yang RR, Chen KY, Wen SF, et al. Enhanced strength and hardness of AS41 magnesium alloy fa-bricated by selective laser melting[J]. Materials, 2022, 15(17): 5863. |
78 | Bryła K, Horky J, Krystian M, et al. Microstructure, mechanical properties, and degradation of Mg-Ag alloy after equal-channel angular pressing[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110543. |
79 | Xu LM, Liu XW, Sun K, et al. Corrosion behavior in magnesium-based alloys for biomedical applications[J]. Materials, 2022, 15(7): 2613. |