Int J Stomatol ›› 2021, Vol. 48 ›› Issue (4): 391-397.doi: 10.7518/gjkq.2021072

• Periodontitis • Previous Articles     Next Articles

Research progress on periodontal functional gradient membrane for guided tissue/bone regeneration

Zhao Wenjun(),Chen Yu()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-01-25 Revised:2021-04-12 Online:2021-07-01 Published:2021-06-30
  • Contact: Yu Chen;
  • Supported by:
    Sichuan International Science and technology innovation cooperation project(2019YFH0024);Chengdu Technology Innovation Research and development project(2018-YF05-01233-SN)


The application of biological barrier membrane (BBM) is the key role in guided tissue/bone regeneration (GTR/GBR) technology. Its main function is to isolate the periodontal defect area from gingival tissue, and prevent the gingival epithelial tissue from growing rapidly into the defect area, so as to create a relatively closed and profitable environment for periodontal tissue regeneration. The ideal BBM should have enough mechanical strength, promoting osteogenesis and anti-inflammatory properties. However, the effect of the current commercially GTR/GBR membranes cannot meet the above ideal requirements, and have different degrees of defects. Therefore, scholars have widely carried out the development and research on the new generation of bioabsorbable GBR/GTR membranes. Of the deeply and extensively researched BBM, FGM has great potential to possess the properties of ideal BBM. It has a broad prospect to enhance the clinical effect of GBR/GTR. In this paper, the research progress of functional gradient GBR/GTR membrane is reviewed, in order to provide reference for its further research and development.

Key words: biological barrier membrane, functional gradient membrane, biomimetic, guided tissue regeneration, guided bone regeneration

CLC Number: 

  • R318


Fig 1

Diagram of FGM showing ladder or continuous change"

Fig 2

FGM structure diagram designed by Bottino MC"

[1] Naebe M, Shirvanimoghaddam K. Functionally gra-ded materials: a review of fabrication and properties[J]. Appl Mater Today, 2016,5:223-245.
[2] Zhang C, Chen F, Huang Z, et al. Additive manufacturing of functionally graded materials: a review[J]. Mater Sci Eng A, 2019,764:138209.
doi: 10.1016/j.msea.2019.138209
[3] Traini T, Mangano C, Sammons RL, et al. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for ma-nufacture of porous titanium dental Implants[J]. Dent Mater, 2008,24(11):1525-1533.
doi: 10.1016/ pmid: 18502498
[4] Holm-Pedersen P, Lang NP, Müller F. What are the longevities of teeth and oral implants[J]. Clin Oral Implants Res, 2007,18(Suppl 3):15-19.
doi: 10.1111/clr.2007.18.issue-s3
[5] Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications[J]. Clin Oral Implants Res, 2010,21(6):567-576.
doi: 10.1111/j.1600-0501.2010.01922.x pmid: 20666785
[6] Turri A, Elgali I, Vazirisani F, et al. Guided bone regeneration is promoted by the molecular events in the membrane compartment[J]. Biomaterials, 2016,84:167-183.
doi: 10.1016/j.biomaterials.2016.01.034
[7] Omar O, Elgali I, Dahlin C, et al. Barrier membranes: more than the barrier effect[J]. J Clin Periodontol, 2019,46(Suppl 21):103-123.
doi: 10.1111/jcpe.13068
[8] Bottino MC, Thomas V. Membranes for periodontal regeneration: a materials perspective[J]. Front Oral Biol, 2015,17:90-100.
doi: 10.1159/000381699 pmid: 26201279
[9] Zanin H, Rodrigues BVM, Neto WAR, et al. High loading of graphene oxide/multi-walled carbon nanotubes into PDLLA: a route towards the design of osteoconductive, bactericidal and non-immunogenic 3D porous scaffolds[J]. Mater Chem Phys, 2016,177:56-66.
doi: 10.1016/j.matchemphys.2016.03.040
[10] Sowmya S, Bumgardener JD, Chennazhi KP, et al. Role of nanostructured biopolymers and biocera-mics in enamel, dentin and periodontal tissue rege-neration[J]. Prog Polym Sci, 2013,38:1748-1772.
doi: 10.1016/j.progpolymsci.2013.05.005
[11] Iwata T, Yamato M, Tsuchioka H, et al. Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model[J]. Biomaterials, 2009,30(14):2716-2723.
doi: 10.1016/j.biomaterials.2009.01.032
[12] Liu Z, Meyers MA, Zhang Z, et al. Functional gra-dients and heterogeneities in biological materials: design principles, functions, and bioinspired applications[J]. Prog Mater Sci, 2017,88:467-498.
doi: 10.1016/j.pmatsci.2017.04.013
[13] Gentile P, Chiono V, Tonda-Turo C, et al. Polymeric membranes for guided bone regeneration[J]. Biotechnol J, 2011,6:1187-1197.
doi: 10.1002/biot.v6.10
[14] Wang JL, Wang LN, Zhou ZY, et al. Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review[J]. Polymers (Basel), 2016,8(4):E115.
[15] Carbonell JM, Martín IS, Santos A, et al. High-density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: a literature review[J]. Int J Oral Maxillofac Surg, 2014,43(1):75-84.
doi: 10.1016/j.ijom.2013.05.017
[16] Qasim SSB, Zafar MS, Niazi FH, et al. Functionally graded biomimetic biomaterials in dentistry: an evidence-based update[J]. J Biomater Sci Polym Ed, 2020,31(9):1144-1162.
doi: 10.1080/09205063.2020.1744289 pmid: 32202207
[17] Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration: a materials perspective[J]. Dent Mater, 2012,28(7):703-721.
doi: 10.1016/ pmid: 22592164
[18] Bottino MC, Thomas V, Janowski GM. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration[J]. Acta Biomater, 2011,7(1):216-224.
doi: 10.1016/j.actbio.2010.08.019 pmid: 20801241
[19] Teng SH, Lee EJ, Wang P, et al. Three-layered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration[J]. J Biomed Mater Res B Appl Biomater, 2008,87(1):132-138.
[20] Ku Y, Shim IK, Lee JY, et al. Chitosan/poly(L-lactic acid) multilayered membrane for guided tissue regeneration[J]. J Biomed Mater Res, 2009,90A(3):766-772.
doi: 10.1002/jbm.a.v90a:3
[21] Masoudi Rad M, Nouri Khorasani S, Ghasemi-Mobarakeh L, et al. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application[J]. Mater Sci Eng C Mater Biol Appl, 2017,80:75-87.
doi: S0928-4931(17)30305-3 pmid: 28866225
[22] Ma SQ, Chen Z, Qiao F, et al. Guided bone regene-ration with tripolyphosphate cross-linked asymme-tric chitosan membrane[J]. J Dent, 2014,42(12):1603-1612.
doi: 10.1016/j.jdent.2014.08.015
[23] Jiang T, Carbone EJ, Lo KWH, et al. Electrospinning of polymer nanofibers for tissue regeneration[J]. Prog Polym Sci, 2015,46:1-24.
doi: 10.1016/j.progpolymsci.2014.12.001
[24] Liao SS, Wang W, Uo M, et al. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration[J]. Biomaterials, 2005,26(36):7564-7571.
doi: 10.1016/j.biomaterials.2005.05.050
[25] Liao SS, Watari F, Zhu YH, et al. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro[J]. Dent Mater, 2007,23(9):1120-1128.
doi: 10.1016/
[26] Thevar JTK, Malek NANN, Kadir MRA. In vitro degradation of triple layered poly (lactic-co-glycolic acid) composite membrane composed of nanoapatite and lauric acid for guided bone regeneration applications[J]. Materials Chemistry and Physics, 2019,221:501-514.
doi: 10.1016/j.matchemphys.2018.09.060
[27] Saarani NN, Jamuna-Thevi K, Shahab N, et al. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone rege-neration membrane on periodontal bacteria[J]. Dent Mater J, 2017,36(3):260-265.
doi: 10.4012/dmj.2016-177 pmid: 28111388
[28] Leal AI, Caridade SG, Ma JL, et al. Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: characterization and in vitro biolo-gical behavior[J]. Dent Mater, 2013,29(4):427-436.
doi: 10.1016/ pmid: 23422419
[29] Almasi D, Sadeghi M, Lau WJ, et al. Functionally gra-ded polymeric materials: a brif review of current fa-brication methods and introduction of a novel fabrication method[J]. Mater Sci Eng C Mater Biol Appl, 2016,64:102-107.
doi: 10.1016/j.msec.2016.03.053
[30] Hoornaert A, d’Arros C, Heymann MF, et al. Biocompatibility, resorption and biofunctionality of a new synthetic biodegradable membrane for guided bone regeneration[J]. Biomed Mater, 2016,11(4):045012.
doi: 10.1088/1748-6041/11/4/045012
[31] Qasim SB, Najeeb S, Delaine-Smith RM, et al. Potential of electrospun chitosan fibers as a surface la-yer in functionally graded GTR membrane for perio-dontal regeneration[J]. Dent Mater, 2017,33(1):71-83.
doi: S0109-5641(16)30572-3 pmid: 27842886
[32] Qasim SB, Delaine-Smith RM, Fey T, et al. Freeze ge-lated porous membranes for periodontal tissue regeneration[J]. Acta Biomater, 2015,23:317-328.
doi: S1742-7061(15)00218-4 pmid: 25968357
[33] Wu S, Wu J, Yue J, et al. Poly (d,l-lactic acid) electrospun fibers with tunable surface nanotopography for modulating drug release profiles[J]. Mater Lett, 2015,161:716-719.
doi: 10.1016/j.matlet.2015.09.065
[34] Schaub NJ, Le Beux C, Miao JJ, et al. The effect of surface modification of aligned poly-L-lactic acid electrospun fibers on fiber degradation and neurite extension[J]. PLoS One, 2015,10(9):e0136780.
doi: 10.1371/journal.pone.0136780
[35] Sartori M, Pagani S, Ferrari A, et al. A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations[J]. Mater Sci Eng C Mater Biol Appl, 2017,70(Pt 1):101-111.
doi: S0928-4931(16)30805-0 pmid: 27770869
[36] Rasoulianboroujeni M, Pitcher S, Tayebi L. Fabrication of gradient scaffolds for bone and dental tissue engineering[J]. Dent Mater, 2016,32:e47-e48.
doi: 10.1016/
[37] Tawakkal IS, Cran MJ, Miltz J, et al. A review of poly(lactic acid)-based materials for antimicrobial pac-kaging[J]. J Food Sci, 2014,79(8):R1477-R1490.
doi: 10.1111/jfds.2014.79.issue-8
[38] Scaffaro R, Lopresti F, Marino A, et al. Antimicrobial additives for poly(lactic acid) materials and their applications: current state and perspectives[J]. Appl Microbiol Biotechnol, 2018,102(18):7739-7756.
doi: 10.1007/s00253-018-9220-1
[39] Wang Y, Jiang YX, Zhang YF, et al. Dual functional electrospun core-shell nanofibers for anti-infective gui-ded bone regeneration membranes[J]. Mater Sci Eng C Mater Biol Appl, 2019,98:134-139.
doi: S0928-4931(18)32907-2 pmid: 30813013
[40] Jiao Y, Tay FR, Niu LN, et al. Advancing antimicrobial strategies for managing oral biofilm infections[J]. Int J Oral Sci, 2019,11(3):28.
doi: 10.1038/s41368-019-0062-1
[41] Barreras US, Méndez FT, Martínez RE, et al. Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2016,58:1182-1187.
doi: 10.1016/j.msec.2015.09.085 pmid: 26478419
[42] Chou AH, LeGeros RZ, Chen Z, et al. Antibacterial effect of zinc phosphate mineralized guided bone regeneration membranes[J]. Implant Dent, 2007,16(1):89-100.
doi: 10.1097/ID.0b013e318031224a
[43] Spinell T, Saliter J, Hackl B, et al. In-vitro cytocompatibility and growth factor content of GBR/GTR me-mbranes[J]. Dent Mater, 2019,35(7):963-969.
doi: S0109-5641(18)30738-3 pmid: 31056222
[44] Park JK, Yeom J, Oh EJ, et al. Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluro-nic acid bi-layer films for periodontal barrier applications[J]. Acta Biomater, 2009,5(9):3394-3403.
doi: 10.1016/j.actbio.2009.05.019
[45] Erisken C, Kalyon DM, Wang HJ. Functionally gra-ded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications[J]. Biomaterials, 2008,29(30):4065-4073.
doi: 10.1016/j.biomaterials.2008.06.022 pmid: 18649939
[46] Yang F, Both SK, Yang XC, et al. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application[J]. Acta Biomater, 2009,5(9):3295-3304.
doi: 10.1016/j.actbio.2009.05.023
[47] Jamróz E, Kulawik P, Kopel P. The effect of nanofillers on the functional properties of biopolymer-based films: a review[J]. Polymers (Basel), 2019,11(4):E675.
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Xu Yanxue,Fu Li.. Research progress on functionally graded membranes for guided bone regeneration [J]. Int J Stomatol, 2023, 50(3): 353-358.
[3] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[4] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[5] Wang Shiqi,Chang Yaqin,Chen Bin,Tan Baochun,Ni Yanhong. Comparison of clinical outcomes between using bone graft alone and the combination of bone graft with membrane for periodontal regeneration therapy: a systematic review and Meta-analysis [J]. Int J Stomatol, 2020, 47(6): 644-651.
[6] Ma Kai,Li Hao,Zhao Hongmei,Wang Yongliang,Liu Jie,Bai Na. Effects of inorganic bovine bone treated with low temperature argon-oxygen plasma on the adhesion, proliferation, and differentiation of MC3T3-E1 cells [J]. Int J Stomatol, 2020, 47(3): 278-285.
[7] Siying Tao,Kunneng Liang,Jiyao Li. Research advances in biomimetic peptides promoting tooth remineralization [J]. Inter J Stomatol, 2019, 46(1): 37-42.
[8] Zhu Chenyou, Wei Shimin, Wang Yuanjing, Wu Yingying.. Research progress on macrophage in bone tissue repair [J]. Inter J Stomatol, 2018, 45(4): 444-448.
[9] Wu Shiyu, Mai Sui. Glass ionomer function in dentin remineralization [J]. Inter J Stomatol, 2015, 42(1): 114-118.
[10] Zhu Xiaojing, Wang Yan. Research progress on co-deposition of calcium phosphate with bioactive molecules on titanium implant surface [J]. Inter J Stomatol, 2014, 41(5): 617-620.
[11] Xi Hong, Zhou Hui, Yan Xiujuan, Zhang Yuna, Hu Weiwei, Huang Yang. Current concepts of nanotechnology and its application in caries therapy [J]. Inter J Stomatol, 2014, 41(5): 563-566.
[12] Wu Xiaoguang 1, Zhao Xu 2, Li Yi 1.. Effects of additives on enamel remineralization [J]. Inter J Stomatol, 2013, 40(4): 526-528.
[13] Chen Hongliang, Zhao Chengchu, Zhao Feng, Zhong Ke, Sun Yong.. Domestic acellular dermal matrix in the treatment of guide bone regeneration the maxillofacial bone defect in planting area of oral performance evaluation [J]. Inter J Stomatol, 2013, 40(1): 33-36.
[14] Wang Chi, Zhu Huiyong.. Research progress on gene modified nanofibrous scaffolds [J]. Inter J Stomatol, 2013, 40(1): 64-67.
[15] Xing Lin, Qu Boying, Huang Yang.. The non-destructive treatment of enamel caries [J]. Inter J Stomatol, 2012, 39(1): 63-65.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .