Int J Stomatol ›› 2021, Vol. 48 ›› Issue (4): 391-397.doi: 10.7518/gjkq.2021072
• Periodontitis • Previous Articles Next Articles
CLC Number:
| [1] | Naebe M, Shirvanimoghaddam K. Functionally gra-ded materials: a review of fabrication and properties[J]. Appl Mater Today, 2016,5:223-245. | 
| [2] |  
											 Zhang C, Chen F, Huang Z, et al. Additive manufacturing of functionally graded materials: a review[J]. Mater Sci Eng A, 2019,764:138209. 
																							 doi: 10.1016/j.msea.2019.138209  | 
										
| [3] |  
											 Traini T, Mangano C, Sammons RL, et al. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for ma-nufacture of porous titanium dental Implants[J]. Dent Mater, 2008,24(11):1525-1533. 
																							 doi: 10.1016/j.dental.2008.03.029 pmid: 18502498  | 
										
| [4] |  
											 Holm-Pedersen P, Lang NP, Müller F. What are the longevities of teeth and oral implants[J]. Clin Oral Implants Res, 2007,18(Suppl 3):15-19. 
																							 doi: 10.1111/clr.2007.18.issue-s3  | 
										
| [5] |  
											 Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications[J]. Clin Oral Implants Res, 2010,21(6):567-576. 
																							 doi: 10.1111/j.1600-0501.2010.01922.x pmid: 20666785  | 
										
| [6] |  
											 Turri A, Elgali I, Vazirisani F, et al. Guided bone regeneration is promoted by the molecular events in the membrane compartment[J]. Biomaterials, 2016,84:167-183. 
																							 doi: 10.1016/j.biomaterials.2016.01.034  | 
										
| [7] |  
											 Omar O, Elgali I, Dahlin C, et al. Barrier membranes: more than the barrier effect[J]. J Clin Periodontol, 2019,46(Suppl 21):103-123. 
																							 doi: 10.1111/jcpe.13068  | 
										
| [8] |  
											 Bottino MC, Thomas V. Membranes for periodontal regeneration: a materials perspective[J]. Front Oral Biol, 2015,17:90-100. 
																							 doi: 10.1159/000381699 pmid: 26201279  | 
										
| [9] |  
											 Zanin H, Rodrigues BVM, Neto WAR, et al. High loading of graphene oxide/multi-walled carbon nanotubes into PDLLA: a route towards the design of osteoconductive, bactericidal and non-immunogenic 3D porous scaffolds[J]. Mater Chem Phys, 2016,177:56-66. 
																							 doi: 10.1016/j.matchemphys.2016.03.040  | 
										
| [10] |  
											 Sowmya S, Bumgardener JD, Chennazhi KP, et al. Role of nanostructured biopolymers and biocera-mics in enamel, dentin and periodontal tissue rege-neration[J]. Prog Polym Sci, 2013,38:1748-1772. 
																							 doi: 10.1016/j.progpolymsci.2013.05.005  | 
										
| [11] |  
											 Iwata T, Yamato M, Tsuchioka H, et al. Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model[J]. Biomaterials, 2009,30(14):2716-2723. 
																							 doi: 10.1016/j.biomaterials.2009.01.032  | 
										
| [12] |  
											 Liu Z, Meyers MA, Zhang Z, et al. Functional gra-dients and heterogeneities in biological materials: design principles, functions, and bioinspired applications[J]. Prog Mater Sci, 2017,88:467-498. 
																							 doi: 10.1016/j.pmatsci.2017.04.013  | 
										
| [13] |  
											 Gentile P, Chiono V, Tonda-Turo C, et al. Polymeric membranes for guided bone regeneration[J]. Biotechnol J, 2011,6:1187-1197. 
																							 doi: 10.1002/biot.v6.10  | 
										
| [14] | Wang JL, Wang LN, Zhou ZY, et al. Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review[J]. Polymers (Basel), 2016,8(4):E115. | 
| [15] |  
											 Carbonell JM, Martín IS, Santos A, et al. High-density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: a literature review[J]. Int J Oral Maxillofac Surg, 2014,43(1):75-84. 
																							 doi: 10.1016/j.ijom.2013.05.017  | 
										
| [16] |  
											 Qasim SSB, Zafar MS, Niazi FH, et al. Functionally graded biomimetic biomaterials in dentistry: an evidence-based update[J]. J Biomater Sci Polym Ed, 2020,31(9):1144-1162. 
																							 doi: 10.1080/09205063.2020.1744289 pmid: 32202207  | 
										
| [17] |  
											 Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration: a materials perspective[J]. Dent Mater, 2012,28(7):703-721. 
																							 doi: 10.1016/j.dental.2012.04.022 pmid: 22592164  | 
										
| [18] |  
											 Bottino MC, Thomas V, Janowski GM. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration[J]. Acta Biomater, 2011,7(1):216-224. 
																							 doi: 10.1016/j.actbio.2010.08.019 pmid: 20801241  | 
										
| [19] | Teng SH, Lee EJ, Wang P, et al. Three-layered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration[J]. J Biomed Mater Res B Appl Biomater, 2008,87(1):132-138. | 
| [20] |  
											 Ku Y, Shim IK, Lee JY, et al. Chitosan/poly(L-lactic acid) multilayered membrane for guided tissue regeneration[J]. J Biomed Mater Res, 2009,90A(3):766-772. 
																							 doi: 10.1002/jbm.a.v90a:3  | 
										
| [21] |  
											 Masoudi Rad M, Nouri Khorasani S, Ghasemi-Mobarakeh L, et al. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application[J]. Mater Sci Eng C Mater Biol Appl, 2017,80:75-87. 
																							 doi: S0928-4931(17)30305-3 pmid: 28866225  | 
										
| [22] |  
											 Ma SQ, Chen Z, Qiao F, et al. Guided bone regene-ration with tripolyphosphate cross-linked asymme-tric chitosan membrane[J]. J Dent, 2014,42(12):1603-1612. 
																							 doi: 10.1016/j.jdent.2014.08.015  | 
										
| [23] |  
											 Jiang T, Carbone EJ, Lo KWH, et al. Electrospinning of polymer nanofibers for tissue regeneration[J]. Prog Polym Sci, 2015,46:1-24. 
																							 doi: 10.1016/j.progpolymsci.2014.12.001  | 
										
| [24] |  
											 Liao SS, Wang W, Uo M, et al. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration[J]. Biomaterials, 2005,26(36):7564-7571. 
																							 doi: 10.1016/j.biomaterials.2005.05.050  | 
										
| [25] |  
											 Liao SS, Watari F, Zhu YH, et al. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro[J]. Dent Mater, 2007,23(9):1120-1128. 
																							 doi: 10.1016/j.dental.2006.06.045  | 
										
| [26] |  
											 Thevar JTK, Malek NANN, Kadir MRA. In vitro degradation of triple layered poly (lactic-co-glycolic acid) composite membrane composed of nanoapatite and lauric acid for guided bone regeneration applications[J]. Materials Chemistry and Physics, 2019,221:501-514. 
																							 doi: 10.1016/j.matchemphys.2018.09.060  | 
										
| [27] |  
											 Saarani NN, Jamuna-Thevi K, Shahab N, et al. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone rege-neration membrane on periodontal bacteria[J]. Dent Mater J, 2017,36(3):260-265. 
																							 doi: 10.4012/dmj.2016-177 pmid: 28111388  | 
										
| [28] |  
											 Leal AI, Caridade SG, Ma JL, et al. Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: characterization and in vitro biolo-gical behavior[J]. Dent Mater, 2013,29(4):427-436. 
																							 doi: 10.1016/j.dental.2013.01.009 pmid: 23422419  | 
										
| [29] |  
											 Almasi D, Sadeghi M, Lau WJ, et al. Functionally gra-ded polymeric materials: a brif review of current fa-brication methods and introduction of a novel fabrication method[J]. Mater Sci Eng C Mater Biol Appl, 2016,64:102-107. 
																							 doi: 10.1016/j.msec.2016.03.053  | 
										
| [30] |  
											 Hoornaert A, d’Arros C, Heymann MF, et al. Biocompatibility, resorption and biofunctionality of a new synthetic biodegradable membrane for guided bone regeneration[J]. Biomed Mater, 2016,11(4):045012. 
																							 doi: 10.1088/1748-6041/11/4/045012  | 
										
| [31] |  
											 Qasim SB, Najeeb S, Delaine-Smith RM, et al. Potential of electrospun chitosan fibers as a surface la-yer in functionally graded GTR membrane for perio-dontal regeneration[J]. Dent Mater, 2017,33(1):71-83. 
																							 doi: S0109-5641(16)30572-3 pmid: 27842886  | 
										
| [32] |  
											 Qasim SB, Delaine-Smith RM, Fey T, et al. Freeze ge-lated porous membranes for periodontal tissue regeneration[J]. Acta Biomater, 2015,23:317-328. 
																							 doi: S1742-7061(15)00218-4 pmid: 25968357  | 
										
| [33] |  
											 Wu S, Wu J, Yue J, et al. Poly (d,l-lactic acid) electrospun fibers with tunable surface nanotopography for modulating drug release profiles[J]. Mater Lett, 2015,161:716-719. 
																							 doi: 10.1016/j.matlet.2015.09.065  | 
										
| [34] |  
											 Schaub NJ, Le Beux C, Miao JJ, et al. The effect of surface modification of aligned poly-L-lactic acid electrospun fibers on fiber degradation and neurite extension[J]. PLoS One, 2015,10(9):e0136780. 
																							 doi: 10.1371/journal.pone.0136780  | 
										
| [35] |  
											 Sartori M, Pagani S, Ferrari A, et al. A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations[J]. Mater Sci Eng C Mater Biol Appl, 2017,70(Pt 1):101-111. 
																							 doi: S0928-4931(16)30805-0 pmid: 27770869  | 
										
| [36] |  
											 Rasoulianboroujeni M, Pitcher S, Tayebi L. Fabrication of gradient scaffolds for bone and dental tissue engineering[J]. Dent Mater, 2016,32:e47-e48. 
																							 doi: 10.1016/j.dental.2016.08.096  | 
										
| [37] |  
											 Tawakkal IS, Cran MJ, Miltz J, et al. A review of poly(lactic acid)-based materials for antimicrobial pac-kaging[J]. J Food Sci, 2014,79(8):R1477-R1490. 
																							 doi: 10.1111/jfds.2014.79.issue-8  | 
										
| [38] |  
											 Scaffaro R, Lopresti F, Marino A, et al. Antimicrobial additives for poly(lactic acid) materials and their applications: current state and perspectives[J]. Appl Microbiol Biotechnol, 2018,102(18):7739-7756. 
																							 doi: 10.1007/s00253-018-9220-1  | 
										
| [39] |  
											 Wang Y, Jiang YX, Zhang YF, et al. Dual functional electrospun core-shell nanofibers for anti-infective gui-ded bone regeneration membranes[J]. Mater Sci Eng C Mater Biol Appl, 2019,98:134-139. 
																							 doi: S0928-4931(18)32907-2 pmid: 30813013  | 
										
| [40] |  
											 Jiao Y, Tay FR, Niu LN, et al. Advancing antimicrobial strategies for managing oral biofilm infections[J]. Int J Oral Sci, 2019,11(3):28. 
																							 doi: 10.1038/s41368-019-0062-1  | 
										
| [41] |  
											 Barreras US, Méndez FT, Martínez RE, et al. Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2016,58:1182-1187. 
																							 doi: 10.1016/j.msec.2015.09.085 pmid: 26478419  | 
										
| [42] |  
											 Chou AH, LeGeros RZ, Chen Z, et al. Antibacterial effect of zinc phosphate mineralized guided bone regeneration membranes[J]. Implant Dent, 2007,16(1):89-100. 
																							 doi: 10.1097/ID.0b013e318031224a  | 
										
| [43] |  
											 Spinell T, Saliter J, Hackl B, et al. In-vitro cytocompatibility and growth factor content of GBR/GTR me-mbranes[J]. Dent Mater, 2019,35(7):963-969. 
																							 doi: S0109-5641(18)30738-3 pmid: 31056222  | 
										
| [44] |  
											 Park JK, Yeom J, Oh EJ, et al. Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluro-nic acid bi-layer films for periodontal barrier applications[J]. Acta Biomater, 2009,5(9):3394-3403. 
																							 doi: 10.1016/j.actbio.2009.05.019  | 
										
| [45] |  
											 Erisken C, Kalyon DM, Wang HJ. Functionally gra-ded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications[J]. Biomaterials, 2008,29(30):4065-4073. 
																							 doi: 10.1016/j.biomaterials.2008.06.022 pmid: 18649939  | 
										
| [46] |  
											 Yang F, Both SK, Yang XC, et al. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application[J]. Acta Biomater, 2009,5(9):3295-3304. 
																							 doi: 10.1016/j.actbio.2009.05.023  | 
										
| [47] | Jamróz E, Kulawik P, Kopel P. The effect of nanofillers on the functional properties of biopolymer-based films: a review[J]. Polymers (Basel), 2019,11(4):E675. |