Inter J Stomatol ›› 2019, Vol. 46 ›› Issue (1): 37-42.doi: 10.7518/gjkq.2019.01.007

• Reviews • Previous Articles     Next Articles

Research advances in biomimetic peptides promoting tooth remineralization

Siying Tao,Kunneng Liang,Jiyao Li()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-05-10 Revised:2018-10-03 Online:2019-01-01 Published:2019-01-11
  • Contact: Jiyao Li E-mail:jiyaoliscu@163.com
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81670977);Key Program of Science and Technology Department of Sichuan Province(2017SZ0030)

Abstract:

Tooth biomimetic remineralization is a key issue in both oral medicine and biomaterial science. Tooth biomimetic remineralization induced by peptides designed from human proteins which can control biomineralization, such as ameloblastin and dentin non-collagenous proteins, is a new method of tooth regeneration. Basic theories of biomimetic peptides promoting remineralization and several representative peptides are reviewed in the paper.

Key words: biomimetic peptides, tooth, remineralization

CLC Number: 

  • R783.1

TrendMD: 
[1] George A, Veis A . Phosphorylated proteins and con-trol over apatite nucleation, crystal growth, and in-hibition[J]. Chem Rev, 2008,108(11):4670-4693.
doi: 10.1021/cr0782729 pmid: 2748976
[2] Niu LN, Zhang W, Pashley DH , et al. Biomimetic remineralization of dentin[J]. Dent Mater, 2014,30(1):77-96.
doi: 10.1016/j.dental.2013.07.013 pmid: 3867526
[3] Kim YK, Mai S, Mazzoni A , et al. Biomimetic remi-neralization as a progressive dehydration mechanism of collagen matrices—implications in the aging of resin-dentin bonds[J]. Acta Biomater, 2010,6(9):3729-3739.
doi: 10.1016/j.actbio.2010.03.021 pmid: 20304110
[4] Kim J, Arola DD, Gu L , et al. Functional biomimetic analogs help remineralize apatite-depleted deminera-lized resin-infiltrated dentin via a bottom-up approach[J]. Acta Biomater, 2010,6(7):2740-2750.
doi: 10.1016/j.actbio.2009.12.052 pmid: 20045745
[5] Gu LS, Huffman BP, Arola DD , et al. Changes in stiffness of resin-infiltrated demineralized dentin after remineralization by a bottom-up biomimetic approach[J]. Acta Biomater, 2010,6(4):1453-1461.
doi: 10.1016/j.actbio.2009.10.052 pmid: 2830350
[6] Tung MS, Eichmiller FC . Amorphous calcium phos-phates for tooth mineralization[J]. Compend Contin Educ Dent, 2004,25(9 Suppl 1):9-13.
pmid: 15645902
[7] Xu AW, Ma Y, Cölfen H . Biomimetic mineralization[J]. J Mater Chem, 2007,17(5):415-449.
doi: 10.1039/B611918M
[8] Tay FR, Pashley DH . Guided tissue remineralisation of partially demineralised human dentine[J]. Bioma-terials, 2008,29(8):1127-1137.
doi: 10.1016/j.biomaterials.2007.11.001 pmid: 18022228
[9] Li J, Yang J, Li J , et al. Bioinspired intrafibrillar mi-neralization of human dentine by PAMAM dendrimer[J]. Biomaterials, 2013,34(28):6738-6747.
doi: 10.1016/j.biomaterials.2013.05.046 pmid: 23787113
[10] Liang K, Yuan H, Li J , et al. Remineralization of demineralized dentin induced by amine-terminated PAMAM dendrimer[J]. Macromol Mater Eng, 2015,300(1):107-117.
doi: 10.1002/mame.201400207
[11] Zhang L, Weir MD, Chow LC , et al. Novel recharge-able calcium phosphate dental nanocomposite[J]. Dent Mater, 2016,32(2):285-293.
doi: 10.1016/j.dental.2015.11.015 pmid: 5116151
[12] Liu Y, Kim YK, Dai L , et al. Hierarchical and non-hierarchical mineralisation of collagen[J]. Biomate-rials, 2011,32(5):1291-1300.
doi: 10.1016/j.biomaterials.2010.10.018 pmid: 3003335
[13] Zeichner-David M . Is there more to enamel matrix proteins than biomineralization[J]. Matrix Biol, 2001,20(5/6):307-316.
doi: 10.1016/S0945-053X(01)00155-X pmid: 11566264
[14] Robinson C, Brookes SJ, Shore RC , et al. The deve-loping enamel matrix: nature and function[J]. Eur J Oral Sci, 1998,106(Suppl 1):282-291.
doi: 10.1111/j.1600-0722.1998.tb02188.x pmid: 9541238
[15] Brookes SJ, Robinson C, Kirkham J , et al. Bioche-mistry and molecular biology of amelogenin proteins of developing dental enamel[J]. Arch Oral Biol, 1995,40(1):1-14.
doi: 10.1016/0003-9969(94)00135-X pmid: 7748107
[16] Shafiei F, Hossein BG, Farajollahi MM , et al. Leu-cine-rich amelogenin peptide (LRAP) as a surface primer for biomimetic remineralization of superficial enamel defects: an in vitro study[J]. Scanning, 2015,37(3):179-185.
doi: 10.1002/sca.21196 pmid: 25676352
[17] Ruan Q, Zhang Y, Yang X , et al. An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface[J]. Acta Biomater, 2013,9(7):7289-7297.
doi: 10.1016/j.actbio.2013.04.004 pmid: 3669649
[18] Fan Y, Sun Z, Moradian-Oldak J . Controlled remine-ralization of enamel in the presence of amelogenin and fluoride[J]. Biomaterials, 2009,30(4):478-483.
doi: 10.1016/j.biomaterials.2008.10.019 pmid: 2642519
[19] Du C, Falini G, Fermani S , et al. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons[J]. Science, 2005,307(5714):1450-1454.
doi: 10.1126/science.1105675 pmid: 15746422
[20] Moradian-Oldak J . Amelogenins: assembly, proces-sing and control of crystal morphology[J]. Matrix Biol, 2001,20(5/6):293-305.
doi: 10.1016/S0945-053X(01)00154-8 pmid: 11566263
[21] Le Norcy E, Kwak SY, Wiedemann-Bidlack FB , et al. Leucine-rich amelogenin peptides regulate mine-ralization in vitro[J]. J Dent Res, 2011,90(9):1091-1097.
doi: 10.1177/0022034511411301 pmid: 3169881
[22] Bagheri GH, Sadr A, Espigares J , et al. Study on the influence of leucine-rich amelogenin peptide (LRAP) on the remineralization of enamel defects via micro-focus x-ray computed tomography and nanoindenta-tion[J]. Biomed Mater, 2015,10(3):035007.
doi: 10.1088/1748-6041/10/3/035007 pmid: 26041048
[23] Kirkham J, Firth A, Vernals D , et al. Self-assembling peptide scaffolds promote enamel remineralization[J]. J Dent Res, 2007,86(5):426-430.
doi: 10.1177/154405910708600507 pmid: 17452562
[24] Lv X, Yang Y, Han S , et al. Potential of an amelogenin based peptide in promoting reminerlization of initial enamel caries[J]. Arch Oral Biol, 2015,60(10):1482-1487.
doi: 10.1016/j.archoralbio.2015.07.010
[25] Han S, Fan Y, Zhou Z , et al. Promotion of enamel caries remineralization by an amelogenin-derived peptide in a rat model[J]. Arch Oral Biol, 2017,73:66-71.
doi: 10.1016/j.archoralbio.2016.09.009 pmid: 27694019
[26] Li QL, Ning TY, Cao Y , et al. A novel self-assembled oligopeptide amphiphile for biomimetic mineraliza-tion of enamel[J]. BMC Biotechnol, 2014,14:32.
doi: 10.1186/1472-6750-14-32 pmid: 4021083
[27] Hao J, Zou B, Narayanan K , et al. Differential expre-ssion patterns of the dentin matrix proteins during mineralized tissue formation[J]. Bone, 2004,34(6):921-932.
doi: 10.1016/j.bone.2004.01.020 pmid: 15193538
[28] Kuboki Y, Fujisawa R, Aoyama K , et al. Calcium-specific precipitation of dentin phosphoprotein: a new method of purification and the significance for the mechanism of calcification[J]. J Dent Res, 1979,58(9):1926-1932.
doi: 10.1177/00220345790580092001
[29] Stetler-Stevenson WG, Veis A . Bovine dentin phos-phophoryn: calcium ion binding properties of a high molecular weight preparation[J]. Calcif Tissue Int, 1987,40(2):97-102.
doi: 10.1007/BF02555712 pmid: 3105840
[30] George A, Bannon L, Sabsay B , et al. The carboxyl-terminal domain of phosphophoryn contains unique extended triplet amino acid repeat sequences forming ordered carboxyl-phosphate interaction ridges that may be essential in the biomineralization process[J]. J Biol Chem, 1996,271(51):32869-32873.
doi: 10.1074/jbc.271.51.32869 pmid: 8955126
[31] He G, Dahl T, Veis A , et al. Nucleation of apatite crystals in vitro by self-assembled dentin matrix pro-tein 1[J]. Nat Mater, 2003,2(8):552-558.
doi: 10.1038/nmat945 pmid: 12872163
[32] Sikes CS, Wheeler AP . Surface reactive peptides and polymers: discovery and commercialization[M]. Washington DC: American Chemical Society Publi-cations, 1991.
[33] Boanini E, Fini M, Gazzano M , et al. Hydroxyapatite nanocrystals modified with acidic amino acids[J]. Eur J Inorg Chem, 2006,2006(23):4821-4826.
doi: 10.1002/ejic.200600423
[34] Hsu CC, Chung HY, Yang JM , et al. Influence of 8DSS peptide on nano-mechanical behavior of human enamel[J]. J Dent Res, 2011,90(1):88-92.
doi: 10.1177/0022034510381904 pmid: 20974901
[35] Yang Y, Lv XP, Shi W , et al. 8DSS-promoted remine-ralization of initial enamel caries in vitro[J]. J Dent Res, 2014,93(5):520-524.
doi: 10.1177/0022034514522815 pmid: 24496294
[36] Liang K, Xiao S, Shi W , et al. 8DSS-promoted remi-neralization of demineralized dentin in vitro[J]. J Mater Chem B, 2015,3(33):6763-6772.
doi: 10.1039/C5TB00764J
[37] Chung HY, Li CC, Hsu CC . Characterization of the effects of 3DSS peptide on remineralized enamel in artificial saliva[J]. J Mech Behav Biomed Mater, 2012,6:74-79.
doi: 10.1016/j.jmbbm.2011.10.008 pmid: 22301175
[38] Chung HY, Li CC . Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide[J]. Mater Sci Eng C Mater Biol Appl, 2013,33(2):969-973.
doi: 10.1016/j.msec.2012.11.031 pmid: 25427512
[39] Sfeir C, Fang PA, Jayaraman T , et al. Synjournal of bone-like nanocomposites using multiphosphorylated peptides[J]. Acta Biomater, 2014,10(5):2241-2249.
doi: 10.1016/j.actbio.2014.01.007 pmid: 24434535
[40] Nijhuis AW, Nejadnik MR, Nudelman F , et al. Enzy-matic pH control for biomimetic deposition of cal-cium phosphate coatings[J]. Acta Biomater, 2014,10(2):931-939.
doi: 10.1016/j.actbio.2013.09.036 pmid: 24095783
[41] Tartaix PH, Doulaverakis M, George A , et al. In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions[J]. J Biol Chem, 2004,279(18):18115-18120.
doi: 10.1074/jbc.M314114200 pmid: 14769788
[42] Padovano JD, Ravindran S, Snee PT , et al. DMP1-derived peptides promote remineralization of human dentin[J]. J Dent Res, 2015,94(4):608-614.
doi: 10.1177/0022034515572441 pmid: 25694469
[43] Wang Q, Wang XM, Tian LL , et al. In situ reminera-lizaiton of partially demineralized human dentine mediated by a biomimetic non-collagen peptide[J]. Soft Matter, 2011,7(20):9673-9680.
doi: 10.1039/c1sm05018d
[44] Cao Y, Liu W, Ning T , et al. A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine[J]. Clin Oral Investig, 2014,18(3):873-881.
doi: 10.1007/s00784-013-1035-y pmid: 23912147
[45] 刘巍, 曹颖, 沈军 , 等. 牙本质基质蛋白-1仿生多肽的设计与评价[J]. 华西口腔医学杂志, 2013,31(4):341-344.
doi: 10.7518/hxkq.2013.04.003
Liu W, Cao Y, Shen J , et al. Design and evaluation of a kind of biomimetic peptides of dentin matrix pro- tein-1[J]. West Chin J Stomatol, 2013,31(4):341-344.
doi: 10.7518/hxkq.2013.04.003
[46] Hunter GK, Hauschka PV, Poole AR , et al. Nucleation and inhibition of hydroxyapatite formation by mine-ralized tissue proteins[J]. Biochem J, 1996,317(Pt 1):59-64.
doi: 10.1042/bj3170059 pmid: 8694787
[47] Young MF, Kerr JM, Ibaraki K , et al. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone[J]. Clin Orthop Relat Res, 1992(281):275-294.
[48] Ducy P, Desbois C, Boyce B , et al. Increased bone formation in osteocalcin-deficient mice[J]. Nature, 1996,382(6590):448-452.
[49] Lee NK, Sowa H, Hinoi E , et al. Endocrine regulation of energy metabolism by the skeleton[J]. Cell, 2007,130(3):456-469.
doi: 10.1016/j.cell.2007.05.047 pmid: 17693256
[50] In Y, Minoura K, Tomoo K , et al. Structural function of C-terminal amidation of endomorphin. Conforma-tional comparison of mu-selective endomorphin-2 with its C-terminal free acid, studied by 1H-NMR spectroscopy, molecular calculation, and X-ray crys-tallography [J]. FEBS J, 2005,272(19):5079-5097.
doi: 10.1111/j.1742-4658.2005.04919.x
[51] Hosseini S, Naderi-Manesh H, Mountassif D , et al. C-terminal amidation of an osteocalcin-derived peptide promotes hydroxyapatite crystallization[J]. J Biol Chem, 2013,288(11):7885-7893.
doi: 10.1074/jbc.M112.422048 pmid: 3597826
[1] Wang Jingnan,Deng Shuli.. Root dysplasia of teeth: a review [J]. Int J Stomatol, 2023, 50(6): 639-645.
[2] Wang Luodan,Fan Hong. Morphological characteristics of sella turcica and its relationship with malocclusion [J]. Int J Stomatol, 2023, 50(6): 653-660.
[3] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[4] Wang Renyi,Zhao Chengzhi,Pan Jian.. Research progress on the effects of prophylactic antibiotics on postoperative complications during the perioperative period of tooth extraction [J]. Int J Stomatol, 2023, 50(5): 558-565.
[5] Wang Gang,Chen Zhuo.. Reduction of the risk of caries after interproximal enamel reduction [J]. Int J Stomatol, 2023, 50(4): 395-400.
[6] Liu Yuntong,Liu Chang,Gao Lichao,Luo Yuxue,Cao Yubin,Hua Chengge.. Research progress on the postoperative inferior alveolar neurosensory disturbance [J]. Int J Stomatol, 2023, 50(4): 479-484.
[7] Huang Dingming, Zhang Lan, Man Yi. Biologic bases of nature tooth-related maxillary sinus floor elevation [J]. Int J Stomatol, 2023, 50(3): 251-262.
[8] Zhao Yali,Wang Zhi,Gao Yang,Xin Pengfei,Zhang Kuanshou,Liu Qingmei. Research progress on the application of KTiOPO4 laser in tooth bleaching [J]. Int J Stomatol, 2023, 50(2): 195-202.
[9] Wang Jingyan,Qin Man,Wang Xin.. Research progress on the clinical characteristics of Axenfeld-Rieger syndrome and the pathogenic mechanisms of paired-like homeodomain transcription factor 2 mutations [J]. Int J Stomatol, 2023, 50(2): 224-229.
[10] Wang Qiqiu,Zhi Qinghui.. Research progress on treatments of enamel white spot lesions [J]. Int J Stomatol, 2022, 49(6): 717-723.
[11] Zhao Manzhu,Song Jinlin. Research progress on expression distribution and regulation mechanism of clock genes in tooth development [J]. Int J Stomatol, 2022, 49(4): 380-385.
[12] Pang Yu,Liu Xian,Wang Liao. Application of digital template in the extraction of embedded supernumerary tooth [J]. Int J Stomatol, 2022, 49(4): 448-452.
[13] Zhao Zhe,Wang Fu,Zheng Xiuli,An Na,Chen Jihua.. Research progress on measuring methods of tooth movement under functional load [J]. Int J Stomatol, 2022, 49(3): 362-366.
[14] Guo Ziyuan,Chang Xiao,Han Kaifang,Zhang Xizhong. Low-level laser therapy for acceleration of fixed orthodontic tooth movement: a systematic review and meta-analysis [J]. Int J Stomatol, 2022, 49(2): 163-172.
[15] An Ning,Li Jiao,Mei Zhidan. Research progress on the osteoprotegerin/receptor activator of nuclear factor-κB/receptor activator of nuclear factor-κB ligand signaling pathway of tooth eruption [J]. Int J Stomatol, 2022, 49(1): 116-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .