 
 Inter J Stomatol ›› 2019, Vol. 46 ›› Issue (1): 37-42.doi: 10.7518/gjkq.2019.01.007
• Reviews • Previous Articles Next Articles
					
													Siying Tao,Kunneng Liang,Jiyao Li( )
)
												  
						
						
						
					
				
CLC Number:
| [1] | George A, Veis A . Phosphorylated proteins and con-trol over apatite nucleation, crystal growth, and in-hibition[J]. Chem Rev, 2008,108(11):4670-4693. doi: 10.1021/cr0782729 pmid: 2748976 | 
| [2] | Niu LN, Zhang W, Pashley DH , et al. Biomimetic remineralization of dentin[J]. Dent Mater, 2014,30(1):77-96. doi: 10.1016/j.dental.2013.07.013 pmid: 3867526 | 
| [3] | Kim YK, Mai S, Mazzoni A , et al. Biomimetic remi-neralization as a progressive dehydration mechanism of collagen matrices—implications in the aging of resin-dentin bonds[J]. Acta Biomater, 2010,6(9):3729-3739. doi: 10.1016/j.actbio.2010.03.021 pmid: 20304110 | 
| [4] | Kim J, Arola DD, Gu L , et al. Functional biomimetic analogs help remineralize apatite-depleted deminera-lized resin-infiltrated dentin via a bottom-up approach[J]. Acta Biomater, 2010,6(7):2740-2750. doi: 10.1016/j.actbio.2009.12.052 pmid: 20045745 | 
| [5] | Gu LS, Huffman BP, Arola DD , et al. Changes in stiffness of resin-infiltrated demineralized dentin after remineralization by a bottom-up biomimetic approach[J]. Acta Biomater, 2010,6(4):1453-1461. doi: 10.1016/j.actbio.2009.10.052 pmid: 2830350 | 
| [6] | Tung MS, Eichmiller FC . Amorphous calcium phos-phates for tooth mineralization[J]. Compend Contin Educ Dent, 2004,25(9 Suppl 1):9-13. pmid: 15645902 | 
| [7] | Xu AW, Ma Y, Cölfen H . Biomimetic mineralization[J]. J Mater Chem, 2007,17(5):415-449. doi: 10.1039/B611918M | 
| [8] | Tay FR, Pashley DH . Guided tissue remineralisation of partially demineralised human dentine[J]. Bioma-terials, 2008,29(8):1127-1137. doi: 10.1016/j.biomaterials.2007.11.001 pmid: 18022228 | 
| [9] | Li J, Yang J, Li J , et al. Bioinspired intrafibrillar mi-neralization of human dentine by PAMAM dendrimer[J]. Biomaterials, 2013,34(28):6738-6747. doi: 10.1016/j.biomaterials.2013.05.046 pmid: 23787113 | 
| [10] | Liang K, Yuan H, Li J , et al. Remineralization of demineralized dentin induced by amine-terminated PAMAM dendrimer[J]. Macromol Mater Eng, 2015,300(1):107-117. doi: 10.1002/mame.201400207 | 
| [11] | Zhang L, Weir MD, Chow LC , et al. Novel recharge-able calcium phosphate dental nanocomposite[J]. Dent Mater, 2016,32(2):285-293. doi: 10.1016/j.dental.2015.11.015 pmid: 5116151 | 
| [12] | Liu Y, Kim YK, Dai L , et al. Hierarchical and non-hierarchical mineralisation of collagen[J]. Biomate-rials, 2011,32(5):1291-1300. doi: 10.1016/j.biomaterials.2010.10.018 pmid: 3003335 | 
| [13] | Zeichner-David M . Is there more to enamel matrix proteins than biomineralization[J]. Matrix Biol, 2001,20(5/6):307-316. doi: 10.1016/S0945-053X(01)00155-X pmid: 11566264 | 
| [14] | Robinson C, Brookes SJ, Shore RC , et al. The deve-loping enamel matrix: nature and function[J]. Eur J Oral Sci, 1998,106(Suppl 1):282-291. doi: 10.1111/j.1600-0722.1998.tb02188.x pmid: 9541238 | 
| [15] | Brookes SJ, Robinson C, Kirkham J , et al. Bioche-mistry and molecular biology of amelogenin proteins of developing dental enamel[J]. Arch Oral Biol, 1995,40(1):1-14. doi: 10.1016/0003-9969(94)00135-X pmid: 7748107 | 
| [16] | Shafiei F, Hossein BG, Farajollahi MM , et al. Leu-cine-rich amelogenin peptide (LRAP) as a surface primer for biomimetic remineralization of superficial enamel defects: an in vitro study[J]. Scanning, 2015,37(3):179-185. doi: 10.1002/sca.21196 pmid: 25676352 | 
| [17] | Ruan Q, Zhang Y, Yang X , et al. An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface[J]. Acta Biomater, 2013,9(7):7289-7297. doi: 10.1016/j.actbio.2013.04.004 pmid: 3669649 | 
| [18] | Fan Y, Sun Z, Moradian-Oldak J . Controlled remine-ralization of enamel in the presence of amelogenin and fluoride[J]. Biomaterials, 2009,30(4):478-483. doi: 10.1016/j.biomaterials.2008.10.019 pmid: 2642519 | 
| [19] | Du C, Falini G, Fermani S , et al. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons[J]. Science, 2005,307(5714):1450-1454. doi: 10.1126/science.1105675 pmid: 15746422 | 
| [20] | Moradian-Oldak J . Amelogenins: assembly, proces-sing and control of crystal morphology[J]. Matrix Biol, 2001,20(5/6):293-305. doi: 10.1016/S0945-053X(01)00154-8 pmid: 11566263 | 
| [21] | Le Norcy E, Kwak SY, Wiedemann-Bidlack FB , et al. Leucine-rich amelogenin peptides regulate mine-ralization in vitro[J]. J Dent Res, 2011,90(9):1091-1097. doi: 10.1177/0022034511411301 pmid: 3169881 | 
| [22] | Bagheri GH, Sadr A, Espigares J , et al. Study on the influence of leucine-rich amelogenin peptide (LRAP) on the remineralization of enamel defects via micro-focus x-ray computed tomography and nanoindenta-tion[J]. Biomed Mater, 2015,10(3):035007. doi: 10.1088/1748-6041/10/3/035007 pmid: 26041048 | 
| [23] | Kirkham J, Firth A, Vernals D , et al. Self-assembling peptide scaffolds promote enamel remineralization[J]. J Dent Res, 2007,86(5):426-430. doi: 10.1177/154405910708600507 pmid: 17452562 | 
| [24] | Lv X, Yang Y, Han S , et al. Potential of an amelogenin based peptide in promoting reminerlization of initial enamel caries[J]. Arch Oral Biol, 2015,60(10):1482-1487. doi: 10.1016/j.archoralbio.2015.07.010 | 
| [25] | Han S, Fan Y, Zhou Z , et al. Promotion of enamel caries remineralization by an amelogenin-derived peptide in a rat model[J]. Arch Oral Biol, 2017,73:66-71. doi: 10.1016/j.archoralbio.2016.09.009 pmid: 27694019 | 
| [26] | Li QL, Ning TY, Cao Y , et al. A novel self-assembled oligopeptide amphiphile for biomimetic mineraliza-tion of enamel[J]. BMC Biotechnol, 2014,14:32. doi: 10.1186/1472-6750-14-32 pmid: 4021083 | 
| [27] | Hao J, Zou B, Narayanan K , et al. Differential expre-ssion patterns of the dentin matrix proteins during mineralized tissue formation[J]. Bone, 2004,34(6):921-932. doi: 10.1016/j.bone.2004.01.020 pmid: 15193538 | 
| [28] | Kuboki Y, Fujisawa R, Aoyama K , et al. Calcium-specific precipitation of dentin phosphoprotein: a new method of purification and the significance for the mechanism of calcification[J]. J Dent Res, 1979,58(9):1926-1932. doi: 10.1177/00220345790580092001 | 
| [29] | Stetler-Stevenson WG, Veis A . Bovine dentin phos-phophoryn: calcium ion binding properties of a high molecular weight preparation[J]. Calcif Tissue Int, 1987,40(2):97-102. doi: 10.1007/BF02555712 pmid: 3105840 | 
| [30] | George A, Bannon L, Sabsay B , et al. The carboxyl-terminal domain of phosphophoryn contains unique extended triplet amino acid repeat sequences forming ordered carboxyl-phosphate interaction ridges that may be essential in the biomineralization process[J]. J Biol Chem, 1996,271(51):32869-32873. doi: 10.1074/jbc.271.51.32869 pmid: 8955126 | 
| [31] | He G, Dahl T, Veis A , et al. Nucleation of apatite crystals in vitro by self-assembled dentin matrix pro-tein 1[J]. Nat Mater, 2003,2(8):552-558. doi: 10.1038/nmat945 pmid: 12872163 | 
| [32] | Sikes CS, Wheeler AP . Surface reactive peptides and polymers: discovery and commercialization[M]. Washington DC: American Chemical Society Publi-cations, 1991. | 
| [33] | Boanini E, Fini M, Gazzano M , et al. Hydroxyapatite nanocrystals modified with acidic amino acids[J]. Eur J Inorg Chem, 2006,2006(23):4821-4826. doi: 10.1002/ejic.200600423 | 
| [34] | Hsu CC, Chung HY, Yang JM , et al. Influence of 8DSS peptide on nano-mechanical behavior of human enamel[J]. J Dent Res, 2011,90(1):88-92. doi: 10.1177/0022034510381904 pmid: 20974901 | 
| [35] | Yang Y, Lv XP, Shi W , et al. 8DSS-promoted remine-ralization of initial enamel caries in vitro[J]. J Dent Res, 2014,93(5):520-524. doi: 10.1177/0022034514522815 pmid: 24496294 | 
| [36] | Liang K, Xiao S, Shi W , et al. 8DSS-promoted remi-neralization of demineralized dentin in vitro[J]. J Mater Chem B, 2015,3(33):6763-6772. doi: 10.1039/C5TB00764J | 
| [37] | Chung HY, Li CC, Hsu CC . Characterization of the effects of 3DSS peptide on remineralized enamel in artificial saliva[J]. J Mech Behav Biomed Mater, 2012,6:74-79. doi: 10.1016/j.jmbbm.2011.10.008 pmid: 22301175 | 
| [38] | Chung HY, Li CC . Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide[J]. Mater Sci Eng C Mater Biol Appl, 2013,33(2):969-973. doi: 10.1016/j.msec.2012.11.031 pmid: 25427512 | 
| [39] | Sfeir C, Fang PA, Jayaraman T , et al. Synjournal of bone-like nanocomposites using multiphosphorylated peptides[J]. Acta Biomater, 2014,10(5):2241-2249. doi: 10.1016/j.actbio.2014.01.007 pmid: 24434535 | 
| [40] | Nijhuis AW, Nejadnik MR, Nudelman F , et al. Enzy-matic pH control for biomimetic deposition of cal-cium phosphate coatings[J]. Acta Biomater, 2014,10(2):931-939. doi: 10.1016/j.actbio.2013.09.036 pmid: 24095783 | 
| [41] | Tartaix PH, Doulaverakis M, George A , et al. In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions[J]. J Biol Chem, 2004,279(18):18115-18120. doi: 10.1074/jbc.M314114200 pmid: 14769788 | 
| [42] | Padovano JD, Ravindran S, Snee PT , et al. DMP1-derived peptides promote remineralization of human dentin[J]. J Dent Res, 2015,94(4):608-614. doi: 10.1177/0022034515572441 pmid: 25694469 | 
| [43] | Wang Q, Wang XM, Tian LL , et al. In situ reminera-lizaiton of partially demineralized human dentine mediated by a biomimetic non-collagen peptide[J]. Soft Matter, 2011,7(20):9673-9680. doi: 10.1039/c1sm05018d | 
| [44] | Cao Y, Liu W, Ning T , et al. A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine[J]. Clin Oral Investig, 2014,18(3):873-881. doi: 10.1007/s00784-013-1035-y pmid: 23912147 | 
| [45] | 刘巍, 曹颖, 沈军 , 等. 牙本质基质蛋白-1仿生多肽的设计与评价[J]. 华西口腔医学杂志, 2013,31(4):341-344. doi: 10.7518/hxkq.2013.04.003 | 
| Liu W, Cao Y, Shen J , et al. Design and evaluation of a kind of biomimetic peptides of dentin matrix pro- tein-1[J]. West Chin J Stomatol, 2013,31(4):341-344. doi: 10.7518/hxkq.2013.04.003 | |
| [46] | Hunter GK, Hauschka PV, Poole AR , et al. Nucleation and inhibition of hydroxyapatite formation by mine-ralized tissue proteins[J]. Biochem J, 1996,317(Pt 1):59-64. doi: 10.1042/bj3170059 pmid: 8694787 | 
| [47] | Young MF, Kerr JM, Ibaraki K , et al. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone[J]. Clin Orthop Relat Res, 1992(281):275-294. | 
| [48] | Ducy P, Desbois C, Boyce B , et al. Increased bone formation in osteocalcin-deficient mice[J]. Nature, 1996,382(6590):448-452. | 
| [49] | Lee NK, Sowa H, Hinoi E , et al. Endocrine regulation of energy metabolism by the skeleton[J]. Cell, 2007,130(3):456-469. doi: 10.1016/j.cell.2007.05.047 pmid: 17693256 | 
| [50] | In Y, Minoura K, Tomoo K , et al. Structural function of C-terminal amidation of endomorphin. Conforma-tional comparison of mu-selective endomorphin-2 with its C-terminal free acid, studied by 1H-NMR spectroscopy, molecular calculation, and X-ray crys-tallography [J]. FEBS J, 2005,272(19):5079-5097. doi: 10.1111/j.1742-4658.2005.04919.x | 
| [51] | Hosseini S, Naderi-Manesh H, Mountassif D , et al. C-terminal amidation of an osteocalcin-derived peptide promotes hydroxyapatite crystallization[J]. J Biol Chem, 2013,288(11):7885-7893. doi: 10.1074/jbc.M112.422048 pmid: 3597826 |