Int J Stomatol ›› 2023, Vol. 50 ›› Issue (2): 195-202.doi: 10.7518/gjkq.2023034

• Reviews • Previous Articles     Next Articles

Research progress on the application of KTiOPO4 laser in tooth bleaching

Zhao Yali1(),Wang Zhi2,Gao Yang3,Xin Pengfei3,Zhang Kuanshou2,Liu Qingmei1,3()   

  1. 1.Shanxi Medical University School of Stomatology, Taiyuan 030001, China
    2.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics & Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
    3.Dept. of Stomatology, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
  • Received:2022-08-05 Revised:2022-12-02 Online:2023-03-01 Published:2023-03-14
  • Contact: Qingmei Liu E-mail:719941324@qq.com;liuqingmei2006@sina.com
  • Supported by:
    Fund for Shanxi Bethune Hospital “Beacon Project” Talent Training(2022FH18);Open Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University(KF202105)

Abstract:

Laser can greatly improve the curative effect of tooth bleaching because of its high efficiency, safety, and convenience. In recent years, many kinds of lasers have been used in tooth bleaching, among which KTiOPO4 laser can be used in combination with a photosensitizer to exhibit a photodynamic effect, produce excellent bleaching effect, and confer higher safety. The special wavelength (532 nm) of this laser can also play a direct role in the photochemical oxidation of tetracycline-stained teeth. KTiOPO4 laser is expected to be used in clinical treatment of refractory tooth coloring, especially in tetracycline-stained teeth. This paper reviews the characteristics, mechanism, efficiency, and safety of KTiOPO4 laser and its comparison with other methods to provide reference for its application in clinical tooth bleaching.

Key words: tooth bleaching, KTiOPO4 laser, photodynamic effect, bleaching effect

CLC Number: 

  • R 781

TrendMD: 

Tab 1

Laser types and characteristics commonly used in tooth bleaching"

激光种类波长性质漂白特点常用参数
KTP激光532 nm(可见光波段)组织透过性激光,波长在血红蛋白和黑色素中有较高的吸收峰可通过光热、光氧化(四环素族螯合物)、光动力作用提高漂白效率,牙体组织几乎不吸收该波长的激光,使用较为安全连续波模式,光斑直径6~8 mm,距牙面10~12 mm,功率0.8~1.0 W,照射时间30 s×3[2125]
Nd: YAG激光1 064 nm(近红外波段)组织透过性激光可通过光热作用提高漂白效率,并可通过止痛作用降低漂白后敏感症状,但可造成髓腔温度较高脉宽60 Hz,光斑直径6 mm,距牙面20 mm,功率8 W,照射时间20 s[8]
半导体激光810 nm(近红外波段);组织透过性激光可通过诱导止痛、抗炎的生物刺激作用减少漂白术后的敏感性连续波模式,功率1.5 W,距牙面5~6 mm,照射时间30 s[26]
940 nm(近红外波段);连续波模式,功率7 W,距牙面1 mm,照射时间30 s[52]
980 nm(近红外波段)连续波模式,功率7 W,距牙面5 mm,照射时间12 s[53]
Er: YAG激光2 940 nm(中红外波段)组织表面吸收性激光,波长在水和羟磷灰石中有较高的吸收峰激光被漂白凝胶中的水吸收,减少激光向深层组织穿透造成的不利影响;激光照射牙面通过微爆破而产生蚀刻作用,增强了牙面的粘接性能脉冲能量40 mJ,脉冲持续时间1 000 μs,脉宽10 Hz,光斑直径5 mm,距牙面20 mm,照射时间20 s×3[51-52]
CO2激光10 600 nm(远红外波段)组织表面吸收性激光,波长在水和羟磷灰石中有较高的吸收峰用于牙齿漂白可造成髓腔温度升高超过牙髓组织安全阈值,已不建议用于牙齿漂白
1 中华口腔医学会口腔修复学专业委员会. 牙齿漂白治疗技术指南[J]. 中华口腔医学杂志, 2021, 56(12): 1191-1196.
Society of Prosthodontics, Chinese Stomatological Association. Guideline of tooth bleaching technology[J]. Chin J Stomatol, 2021, 56(12): 1191-1196.
2 Costa JLSG, Besegato JF, Kuga MC. Bleaching and microstructural effects of low concentration hydrogen peroxide photoactivated with LED/laser system on bovine enamel[J]. Photodiagnosis Photodyn Ther, 2021, 35: 102352.
3 张雪雯, 李聪, 徐小茵, 等. 混合光源系统用于活髓牙漂白的临床研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 683-689.
Zhang XW, Li C, Xu XY, et al. Hybrid light source in vital dental bleaching[J]. Int J Stomatol, 2021, 48(6): 683-689.
4 Dionysopoulos D, Strakas D, Tolidis K, et al. Spectrophotometric analysis of the effectiveness of a novel in-office laser-assisted tooth bleaching me-thod using Er,Cr: YSGG laser[J]. Lasers Med Sci, 2017, 32(8): 1811-1818.
5 Cassoni A, Rodrigues JA. Argon laser: a light source alternative for photopolymerization and in-office tooth bleaching[J]. Gen Dent, 2007, 55(5): 416-419.
6 Moosavi H, Hakimi N. The effects of fractional CO2 laser, nano-hydroxyapatite and MI paste on mecha-nical properties of bovine enamel after bleaching[J]. J Clin Exp Dent, 2017, 9(12): e1390-e1396.
7 Cevval Ozkocak BB, Aytac Bal F. Effect of diode laser-assisted bleaching on the bond strength of diffe-rent adhesive systems to enamel: interfacial SEM analysis[J]. Microsc Res Tech, 2021, 84(7): 1542-1552.
8 Hou XX, Yuan KY, Huang ZW, et al. Effects of bleaching associated with Er: YAG and Nd: YAG laser on enamel structure and bacterial biofilm formation[J]. Scanning, 2021, 2021: 6400605.
9 Rezaei M, Aliasghar E, Rezvani MB, et al. Effect of Er: YAG laser on microtensile bond strength of bleached dentin to composite[J]. J Lasers Med Sci, 2019, 10(2): 117-124.
10 Engin B, Tanakol A, Özkoca D, et al. A prospective study evaluating the effectiveness of Q-switched ND-YAG laser (KTP) in the treatment of solar lentigines with a skin analysis device[J]. Dermatol Ther, 2019, 32(3): e12877.
11 Eichenfield DZ, Ortiz AE. Efficacy and safety of the 532-nm KTP and long-pulsed 1 064-nm neody-mium-doped yttrium aluminum garnet laser for treatment of vascular malformations[J]. Dermatol Surg, 2020, 46(12): 1535-1539.
12 Becher GL, Cameron H, Moseley H. Treatment of superficial vascular lesions with the KTP 532-nm laser: experience with 647 patients[J]. Lasers Med Sci, 2014, 29(1): 267-271.
13 Bachmann A, Ruszat R. The KTP-(greenlight-) laser: principles and experiences[J]. Minim Invasive Ther Allied Technol, 2007, 16(1): 5-10.
14 姜雪, 黄淡远, 廖文. 磷酸钛氧钾激光应用于口腔疾病治疗的研究进展 [J]. 国际口腔医学杂志, 2019, 46(4): 456-462.
Jiang X, Huang DY, Liao W. Advances in KTiOPO4 laser for oral disease treatment[J]. Int of Stomatol, 2019, 46(4): 456-462.
15 Vanderstricht K, Moor RD. Laser-assisted bleaching with the KTP[J]. J Oral Laser Appl, 2009, 9(2/3): 129-136.
16 Moor RD, Vanderstricht K. The use of the KTP laser, an added value for tooth bleaching[J]. J Oral Laser Appl, 2009, 9(4): 219-226.
17 Tope WD, Kageyama N. “Hot” KTP-laser treatment of facial angiofibromata[J]. Lasers Surg Med, 2001, 29(1): 78-81.
18 Kinoshita J, Jafarzadeh H, Forghani M. Vital blea-ching of tetracycline-stained teeth by using KTP laser: a case report[J]. Eur J Dent, 2009, 3(3): 229-232.
19 Buchalla W, Attin T. External bleaching therapy with activation by heat, light or laser: a systematic review[J]. Dent Mater, 2007, 23(5): 586-596.
20 Bowles WH, Ugwuneri Z. Pulp chamber penetration by hydrogen peroxide following vital bleaching procedures[J]. J Endod, 1987, 13(8): 375-377.
21 Kuzekanani M, Walsh LJ. Quantitative analysis of KTP laser photodynamic bleaching of tetracycline-discolored teeth[J]. Photomed Laser Surg, 2009, 27(3): 521-525.
22 He X, Hu N, Yang S, et al. Nimotuzumab shows an additive effect to inhibit cell growth of ALA-PDT treated oral cancer cells[J]. Photodiagnosis Photodyn Ther, 2022, 38: 102817.
23 De Moor RJ, Verheyen J, Diachuk A, et al. Insight in the chemistry of laser-activated dental bleaching[J]. Sci World J, 2015, 2015: 650492.
24 Arce C, Araya C, De Moor R. Potassium-titanyl-phosphate (KTP) laser and dental bleaching. Literature review[J]. J Oral Res, 2013, 2(3): 153-157.
25 Walsh LJ, Liu JY, Verheyen P. Tooth discolouration and its treatment using KTP laser-assisted tooth whitening[J]. J Oral Laser Appl, 2004, 4(1): 7-21.
26 Shahabi S, Assadian H, Mahmoudi Nahavandi A, et al. Comparison of tooth color change after blea-ching with conventional and different light-activated methods[J]. J Lasers Med Sci, 2018, 9(1): 27-31.
27 Yusof EM, Abdullah SA, Mohamed NH. Influence of light and laser activation of tooth bleaching systems on enamel microhardness and surface roughness[J]. J Conserv Dent, 2020, 23(5): 473-478.
28 Manso AP, De Morais DC, Yamamoto K, et al. Effects of prolonged use of over-the-counter bleaching agents on enamel: an in vitro study[J]. Microsc Res Tech, 2022, 85(3): 1016-1027.
29 Goharkhay K, Schoop U, Wernisch J, et al. Frequency doubled neodymium: yttrium-aluminum-garnet and diode laser-activated power bleaching: pH, environmental scanning electron microscopy, and colorimetric in vitro evaluations[J]. Lasers Med Sci, 2009, 24(3): 339-346.
30 Ashnagar S, Monzavi A, Abbasi M, et al. Evaluation of the effect of different laser activated blea-ching methods on enamel susceptibility to caries; an in vitro mode[J]. J Lasers Med Sci, 2017, 8(): S62-S67.
31 Llena C, Esteve I, Forner L. Effects of in-office bleaching on human enamel and dentin. Morpholo-gical and mineral changes[J]. Ann Anat, 2018, 217: 97-102.
32 Katalinić I, Budimir A, Bošnjak Z, et al. The photo-activated and photo-thermal effect of the 445/970 nm diode laser on the mixed biofilm inside root canals of human teeth in vitro: a pilot study[J]. Photodiagnosis Photodyn Ther, 2019, 26: 277-283.
33 Kinoshita J, Jafarzadeh H, Manabe A, et al. Effects of KTP laser bleaching on traumatized tooth enamel[J]. Trauma Mon, 2014, 19(2): e18168.
34 Zhang CF, Wang XG, Kinoshita J, et al. Effects of KTP laser irradiation, diode laser, and LED on tooth bleaching: a comparative study[J]. Photomed Laser Surg, 2007, 25(2): 91-95.
35 Dilber E, Malkoc MA, Ozturk AN, et al. Effect of various laser irradiations on the mineral content of dentin[J]. Eur J Dent, 2013, 7(1): 74-80.
36 Zanolla J, Marques A, da Costa DC, et al. Influence of tooth bleaching on dental enamel microhardness: a systematic review and meta-analysis[J]. Aust Dent J, 2017, 62(3): 276-282.
37 Anagnostaki E, Mylona V, Kosma K, et al. A spectrophotometric study on light attenuation properties of dental bleaching gels: potential relevance to irradiation parameters[J]. Dent J, 2020, 8(4): 137.
38 Karaarslan ES, Özmen ZC, Aytac F, et al. Evaluation of biochemical changes in dental tissues after different office bleaching methods[J]. Hum Exp Toxicol, 2019, 38(4): 389-397.
39 Benetti F, Lemos CAA, de Oliveira Gallinari M, et al. Influence of different types of light on the response of the pulp tissue in dental bleaching: a systematic review[J]. Clin Oral Investig, 2018, 22(4): 1825-1837.
40 Abdul-Satar SM, Abass AK, Abdul-Ameer ZM. Study the hardness and temperature changes during tooth bleaching using different laser sources[J]. J Bagh Coll Dentistry, 2010, 22(4): 41-46.
41 Fornaini C, Lagori G, Merigo E, et al. Analysis of shade, temperature and hydrogen peroxide concentration during dental bleaching: in vitro study with the KTP and diode lasers[J]. Lasers Med Sci, 2013, 28(1): 1-6.
42 Gao Y, Zhao ZP, Li L, et al. In vitro evaluation of the effectiveness of bleaching agents activated by KTP and Nd: YAG laser[J]. Photodiagnosis Photodyn Ther, 2020, 31: 101900.
43 Casado B, Pellizzer EP, Souto Maior JR, et al. Laser influence on dental sensitivity compared to other light sources used during in-office dental bleaching: systematic review and meta-analysis[J]. Oper Dent, 2020, 45(6): 589-597.
44 Kikly A, Jaâfoura S, Sahtout S. Vital laser-activated teeth bleaching and postoperative sensitivity: a systematic review[J]. J Esthet Restor Dent, 2019, 31(5): 441-450.
45 Lima AF, Ribeiro AP, Basso FG, et al. Effect of low-level laser therapy on odontoblast-like cells exposed to bleaching agent[J]. Lasers Med Sci, 2014, 29(5): 1533-1538.
46 Yavuz T, Ozyilmaz OY, Ozturk AN, et al. Bond strength of resin composite to light activated bleached enamel[J]. Niger J Clin Pract, 2016, 19(6): 766-771.
47 Oznurhan F, Kapdan A, Buldur B, et al. Influence of erbium: yttrium-aluminum-garnet laser, potassium titanyl phosphate laser irradiation, and acid etch on microtensile bond strength of adhesives[J]. J Pediatr Dent, 2015, 3(2): 46.
48 Schoop U, Kluger W, Dervisbegovic S, et al. Innovative wavelengths in endodontic treatment[J]. Lasers Surg Med, 2006, 38(6): 624-630.
49 Lagori G, Vescovi P, Merigo E, et al. The bleaching efficiency of KTP and diode 810 nm lasers on teeth stained with different substances: an in vitro study[J]. Laser Ther, 2014, 23(1): 21-30.
50 Bennett ZY, Walsh LJ. Efficacy of LED versus KTP laser activation of photodynamic bleaching of tetracycline-stained dentine[J]. Lasers Med Sci, 2015, 30(7): 1823-1828.
51 Nguyen C, Augros C, Rocca JP, et al. KTP and Er: YAG laser dental bleaching comparison: a spectrophotometric, thermal and morphologic analysis[J]. Lasers Med Sci, 2015, 30(8): 2157-2164.
52 Ergin E, Ruya Yazici A, Kalender B, et al. In vitro comparison of an Er: YAG laser-activated bleaching system with different light-activated bleaching systems for color change, surface roughness, and ena-mel bond strength[J]. Lasers Med Sci, 2018, 33(9): 1913-1918.
53 Surmelioglu D, Usumez A. Effectiveness of diffe-rent laser-assisted in-office bleaching techniques: 1-year follow-up[J]. Photobiomodul Photomed Laser Surg, 2020, 38(10): 632-639.
54 De Moor RJ, Verheyen J, Verheyen P, et al. Laser teeth bleaching: evaluation of eventual side effects on enamel and the pulp and the efficiency in vitro and in vivo [J]. Sci World J, 2015, 2015: 835405.
[1] Jiang Xue,Huang Danyuan,Liao Wen. Advances in KTiOPO4 laser for oral disease treatment [J]. Int J Stomatol, 2019, 46(4): 456-462.
[2] Weng Jiahua, Mai Lixiang, Wang Dawei.. Effect of tooth bleaching on the bond strength of orthodontic brackets [J]. Inter J Stomatol, 2013, 40(1): 105-108.
[3] HE Li-bang, LI Ji-yao. The r eview of the effect of external tooth bleaching on tooth hard tissue [J]. Inter J Stomatol, 2008, 35(5): 526-526~528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .