Int J Stomatol ›› 2022, Vol. 49 ›› Issue (2): 163-172.doi: 10.7518/gjkq.2022042

• Original Articles • Previous Articles     Next Articles

Low-level laser therapy for acceleration of fixed orthodontic tooth movement: a systematic review and meta-analysis

Guo Ziyuan1,2(),Chang Xiao1,Han Kaifang1,Zhang Xizhong1,2()   

  1. 1. Dept. of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
    2. Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
  • Received:2021-06-07 Revised:2021-12-14 Online:2022-03-01 Published:2022-03-15
  • Contact: Xizhong Zhang E-mail:15122282102@163.com;zhangxizhong9999@qq.com
  • Supported by:
    Science and Technology Project of Tianjin Health Committee(ZC20001)

Abstract:

Objective This study aims to investigate the effectiveness of low-level laser in promoting orthodontic tooth movement by systematic review and meta-analysis. Methods Studies were included after searching PubMed, Embase, Cochrane library, China national knowledge infrastructure (CNKI), Wanfang, and VIP databases. Outcome indicators were divided into four groups according to the time of orthodontic tooth movement, namely, 1 week, 1 month, 2 months, and 3 months. Data processing was performed on the volume of canine movement in different time periods as a continuous random variable. Traditional meta-analysis was performed using Review Manager 5.3, and the included studies were divided into three groups according to energy density parameters. Stata 15.0 software was used for network meta-analysis (NMA). Results The systematic review has been registered on Prospero’s website with registration number CRD42020175850. Twenty-four studies were finally included in the systematic evaluation, and 23 literatures were included in the meta-analysis. Conclusion Low-level laser therapy can promote orthodontic tooth movement at 1 week, 1 month, 2 months, and 3 months. The energy density of 0-10 J·cm-2 was better than that of 10-25 J·cm-2 at 1, 2, and 3 months.

Key words: orthodontics, tooth movement, low-level laser, systematic review

CLC Number: 

  • R783.5

TrendMD: 

Fig 1

Flow diagram of literature retrieval and screening"

Tab 1

Characteristics of the included studies"

参考文献 纳入数(干预/对照) 能量密度 正畸力/N 结局指标
[12] 10/10 20 mw·cm-2 Not given 尖牙移动量
[13] 10/10 0.5 w·cm-2 1.5 尖牙移动量
[14] 12/12 Not given 1.5 尖牙移动率
[15] 11/11 5 J·cm-2 1.5 尖牙移动量
[16] 12/12 5 J·cm-2 1.5 尖牙移动量
[17] 20/20 Not given 1.5 尖牙移动量
[18] 20/20 20 mw·cm-2 1.5 尖牙移动量
[19] 60/30 Not given Not given 尖牙移动量
[20] 20/20 2.5 J·cm-2 1.5 尖牙移动量
[21] 20/20 2.5 J·cm-2 1.5 尖牙移动量
[22] 20/20 5 J·cm-2 1.5 尖牙移动量
[23] 20/20 21.4 J·cm-2 1.5 尖牙移动量
[24] 16/16 15.92 J·cm-2 1.5 尖牙移动量
[25] 10/10 4.2 J·cm-2 1.5 尖牙移动量
[26] 12/12 25 J·cm-2 1.5 尖牙移动量
[27] 22/22 1.97 w·cm-2 1.5 尖牙移动量
[28] 11/11 10 J·cm-2 1.5 尖牙移动量
[29] 15/15 5 J·cm-2 1.5 尖牙移动量
[30] 22/22 7.5 J·cm-2 1.5 尖牙移动量
[31] 13/13 5 J·cm-2 1.5 尖牙移动量
[32] 10/10 8 J·cm-2 1.5 尖牙移动量
[33] 17/17 5 J·cm-2 1.25 尖牙移动量
[34] 36/36 2.5 J·cm-2 1.37 尖牙移动量
[35] 30/30 Not given 1.5 尖牙移动量
[23] 20/20 21.4 J·cm-2 1.5 尖牙移动量
[24] 16/16 15.92 J·cm-2 1.5 尖牙移动量
[25] 10/10 4.2 J·cm-2 1.5 尖牙移动量
[26] 12/12 25 J·cm-2 1.5 尖牙移动量
[27] 22/22 1.97 w·cm-2 1.5 尖牙移动量
[28] 11/11 10 J·cm-2 1.5 尖牙移动量
[29] 15/15 5 J·cm-2 1.5 尖牙移动量
[30] 22/22 7.5 J·cm-2 1.5 尖牙移动量
[31] 13/13 5 J·cm-2 1.5 尖牙移动量
[32] 10/10 8 J·cm-2 1.5 尖牙移动量
[33] 17/17 5 J·cm-2 1.25 尖牙移动量
[34] 36/36 2.5 J·cm-2 1.37 尖牙移动量
[35] 30/30 Not given 1.5 尖牙移动量

Fig 2

Risk of bias summary: cross plot of judgment results for each item of each study"

Fig 3

Each risk of bias item presented as percentages across all included studies"

Fig 4

Meta analysis of the canine movement distance at 1 week"

Fig 5

Meta analysis of the canine movement distance at 1 month"

Fig 6

The rankograms and surface under the cumulative ranking (one month)"

Fig 7

Forest plot at 1 month"

Fig 8

Meta analysis of the canine movement distance at 2 months"

Fig 9

The rankograms and surface under the cumulative ranking (two months)"

Fig 10

Forest plot at 2 months"

Fig 11

Meta analysis of the canine movement distance at 3 months"

Fig 12

The rankograms and surface under the cumulative ranking (three months)"

Fig 13

Forest plot at 3 months"

[1] Mavreas D, Athanasiou AE. Factors affecting the duration of orthodontic treatment: a systematic review[J]. Eur J Orthod, 2008, 30(4): 386-395.
doi: 10.1093/ejo/cjn018
[2] Julien KC, Buschang PH, Campbell PM. Prevalence of white spot lesion formation during orthodontic treatment[J]. Angle Orthod, 2013, 83(4): 641-647.
doi: 10.2319/071712-584.1 pmid: 23289733
[3] Li XY, Xu JC, Yin YY, et al. Association between root resorption and tooth development: a quantitative clinical study[J]. Am J Orthod Dentofacial Orthop, 2020, 157(5): 602-610.
doi: 10.1016/j.ajodo.2019.11.011
[4] Han J, Hwang S, Nguyen T, et al. Periodontal and root changes after orthodontic treatment in middle-aged adults are similar to those in young adults[J]. Am J Orthod Dentofacial Orthop, 2019, 155(5): 650-655.e2.
doi: 10.1016/j.ajodo.2018.05.027
[5] Mistry D, Dalci O, Papageorgiou SN, et al. The effects of a clinically feasible application of low-level laser therapy on the rate of orthodontic tooth movement: a triple-blind, split-mouth, randomized controlled trial[J]. Am J Orthod Dentofacial Orthop, 2020, 157(4): 444-453.
doi: 10.1016/j.ajodo.2019.12.005
[6] Lalnunpuii H, Batra P, Sharma K, et al. Comparison of rate of orthodontic tooth movement in adolescent patients undergoing treatment by first bicuspid extraction and en-mass retraction, associated with low level laser therapy in passive self-ligating and conventional brackets: a randomized controlled trial[J]. Int Orthod, 2020, 18(3): 412-423.
doi: 10.1016/j.ortho.2020.05.008
[7] Elkattan AE, Gheith M, Fayed MS, et al. Effects of different parameters of diode laser on acceleration of orthodontic tooth movement and its effect on relapse: an experimental animal study[J]. Open Access Maced J Med Sci, 2019, 7(3): 412-420.
doi: 10.3889/oamjms.2019.089 pmid: 30834013
[8] Hsu LF, Tsai MH, Shih AHY, et al. 970 nm low-level laser affects bone metabolism in orthodontic tooth movement[J]. J Photochem Photobiol B Biol, 2018, 186: 41-50.
doi: 10.1016/j.jphotobiol.2018.05.011
[9] de Almeida VL, de Andrade Gois VL, Andrade RN, et al. Efficiency of low-level laser therapy within induced dental movement: a systematic review and meta-analysis[J]. J Photochem Photobiol B, 2016, 158: 258-266.
doi: 10.1016/j.jphotobiol.2016.02.037
[10] Cronshaw M, Parker S, Anagnostaki E, et al. Syste-matic review of orthodontic treatment management with photobiomodulation therapy[J]. Photobiomodul Photomed Laser Surg, 2019, 37(12): 862-868.
doi: 10.1089/photob.2019.4702 pmid: 31755850
[11] Chaimani A, Higgins JP, Mavridis D, et al. Graphical tools for network meta-analysis in STATA[J]. PLoS One, 2013, 8(10): e76654.
doi: 10.1371/journal.pone.0076654
[12] Abdelhameed AN, Refai WMM. Evaluation of the effect of combined low energy laser application and micro-osteoperforations versus the effect of application of each technique separately on the rate of or-thodontic tooth movement[J]. Open Access Maced J Med Sci, 2018, 6(11): 2180-2185.
doi: 10.3889/oamjms.2018.386 pmid: 30559886
[13] Monea A, Monea M, Pop D, et al. The effect of low level laser therapy on orthodontic tooth movement[J]. Optoelectron Adv Mater Rapid Commun, 2015, 9(1/2): 286-289.
[14] Arumughan S, Somaiah S, Muddaiah S, et al. A comparison of the rate of retraction with low-level laser therapy and conventional retraction technique[J]. Contemp Clin Dent, 2018, 9(2): 260-266.
doi: 10.4103/ccd.ccd_857_17
[15] Cruz DR, Kohara EK, Ribeiro MS, et al. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study[J]. Lasers Surg Med, 2004, 35(2): 117-120.
doi: 10.1002/(ISSN)1096-9101
[16] Dalaie K, Hamedi R, Kharazifard MJ, et al. Effect of low-level laser therapy on orthodontic tooth movement: a clinical investigation[J]. J Dent (Tehran), 2015, 12(4): 249-256.
[17] Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation[J]. Am J Orthod Dentofacial Orthop, 2012, 141(3): 289-297.
doi: 10.1016/j.ajodo.2011.09.009
[18] Ekizer A, Türker G, Uysal T, et al. Light emitting diode mediated photobiomodulation therapy improves orthodontic tooth movement and miniscrew stability: a randomized controlled clinical trial[J]. Lasers Surg Med, 2016, 48(10): 936-943.
doi: 10.1002/lsm.22516
[19] Fujiyama K, Deguchi T, Murakami T, et al. Clinical effect of CO2 laser in reducing pain in orthodontics[J]. Angle Orthod, 2008, 78(2): 299-303.
doi: 10.2319/033007-153.1 pmid: 18251609
[20] 高光明, 李明, 高义. 低能量激光加速正畸牙齿移动的临床研究[J]. 哈尔滨医科大学学报, 2002, 36(6): 481-482.
Gao GM, Li M, Gao Y. Clinical application of low energy laser in the acceleration of orthodontic tooth movement[J]. J Harbin Med Univ, 2002, 36(6): 481-482.
[21] 贵林, 曲虹. 低强度激光照射加速正畸牙齿移动的临床研究[J]. 大连医科大学学报, 2008, 30(2): 155-156.
Gui L, Qu H. Clinical application of low energy laser in acceleration of orthodontic tooth movement[J]. J Dalian Med Univ, 2008, 30(2): 155-156.
[22] Guram G, Reddy RK, Dharamsi AM, et al. Evaluation of low-level laser therapy on orthodontic tooth movement: a randomized control study[J]. Contemp Clin Dent, 2018, 9(1): 105-109.
[23] Heravi F, Moradi A, Ahrari F. The effect of low le-vel laser therapy on the rate of tooth movement and pain perception during canine retraction[J]. Oral Health Dent Manag, 2014, 13(2): 183-188.
[24] 姜委杰, 刘珺, 林炜, 等. 不同强度的低能量激光照射对正畸牙齿移动速度影响的临床研究[J]. 全科口腔医学电子杂志, 2019, 6(7): 14-16, 25.
Jiang WJ, Liu J, Lin W, et al. A clinical study of the effect of different energy density low level laser irradiation on orthodontic tooth movement[J]. Gen J Stomatol, 2019, 6(7): 14-16, 25.
[25] Kansal A, Kittur N, Kumbhojkar V, et al. Effects of low-intensity laser therapy on the rate of orthodontic tooth movement: a clinical trial[J]. Dent Res J (Isfahan), 2014, 11(4): 481-488.
pmid: 25225562
[26] Limpanichkul W, Godfrey K, Srisuk N, et al. Effects of low-level laser therapy on the rate of orthodontic tooth movement[J]. Orthod Craniofac Res, 2006, 9(1): 38-43.
doi: 10.1111/j.1601-6343.2006.00338.x pmid: 16420273
[27] Mistry D, Dalci O, Papageorgiou SN, et al. The effects of a clinically feasible application of low-level laser therapy on the rate of orthodontic tooth movement: a triple-blind, split-mouth, randomized controlled trial[J]. Am J Orthod Dentofacial Orthop, 2020, 157(4): 444-453.
doi: 10.1016/j.ajodo.2019.12.005
[28] Pereira SCDC, Avila FEA, Pinzan A, et al. Low intensity laser influence on orthodontic movement: a randomized clinical and radiographic trial[J]. J Indian Orthod Soc, 2020, 54(2): 127-134.
doi: 10.1177/0301574220924962
[29] Qamruddin I, Alam MK, Mahroof V, et al. Effects of low-level laser irradiation on the rate of orthodontic tooth movement and associated pain with self-ligating brackets[J]. Am J Orthod Dentofac Orthop, 2017, 152(5): 622-630.
doi: 10.1016/j.ajodo.2017.03.023
[30] Üretürk SE, Saraç M, Fıratlı S, et al. The effect of low-level laser therapy on tooth movement during canine distalization[J]. Lasers Med Sci, 2017, 32(4): 757-764.
doi: 10.1007/s10103-017-2159-0
[31] Sousa MV, Scanavini MA, Sannomiya EK, et al. In-fluence of low-level laser on the speed of orthodontic movement[J]. Photomed Laser Surg, 2011, 29(3): 191-196.
doi: 10.1089/pho.2009.2652
[32] Varella AM, Revankar AV, Patil AK. Low-level laser therapy increases interleukin-1β in gingival crevicular fluid and enhances the rate of orthodontic tooth movement[J]. Am J Orthod Dentofacial Orthop, 2018, 154(4): 535-544.e5.
doi: 10.1016/j.ajodo.2018.01.012
[33] 王铁军, 刘东旭, 董作英. 低强度激光照射对尖牙移动速率的影响[J]. 中国医药导报, 2007, 4(12): 147-148.
Wang TJ, Liu DX, Dong ZY. Effect of low intensity laser irradiation on canine tooth movement rate[J]. China Med Her, 2007, 4(12): 147-148.
[34] 徐成伟, 张则军, 赵军, 等. 低强度激光照射加速正畸牙移动的效果[J]. 齐鲁医学杂志, 2006, 21(1): 45-46.
Xu CW, Zhang ZJ, Zhao J, et al. The effect of low energy laser on accelerating orthodontic tooth movement[J]. Med J Qilu, 2006, 21(1): 45-46.
[35] Youssef M, Ashkar S, Hamade E, et al. The effect of low-level laser therapy during orthodontic movement: a preliminary study[J]. Lasers Med Sci, 2008, 23(1): 27-33.
doi: 10.1007/s10103-007-0449-7
[36] Maiman TH. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.
doi: 10.1038/187493a0
[37] Friedmann H, Lubart R. Competition between activating and inhibitory processes in photobiology[C]// BiOS Europe’95. Effects of low-power light on biological systems. Barcelona: Proc SPIE 2630, 1996: 60-64.
[38] Mester A, Mester A. The history of photobiomodulation: endre mester (1903-1984)[J]. Photomed Laser Surg, 2017, 35(8): 393-394.
doi: 10.1089/pho.2017.4332
[39] Fujihara NA, Hiraki KR, Marques MM. Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence[J]. Lasers Surg Med, 2006, 38(4): 332-336.
doi: 10.1002/(ISSN)1096-9101
[40] Damante CA, De Micheli G, Miyagi SP, et al. Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts[J]. Lasers Med Sci, 2009, 24(6): 885-891.
doi: 10.1007/s10103-008-0582-y
[41] Marques MM, Pereira AN, Fujihara NA, et al. Effect of low-power laser irradiation on protein synjournal and ultrastructure of human gingival fibroblasts[J]. Lasers Surg Med, 2004, 34(3): 260-265.
doi: 10.1002/lsm.20008
[42] Maegawa Y, Itoh T, Hosokawa T, et al. Effects of near-infrared low-level laser irradiation on microcirculation[J]. Lasers Surg Med, 2000, 27(5): 427-437.
doi: 10.1002/(ISSN)1096-9101
[43] Yamaguchi M, Hayashi M, Fujita S, et al. Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats[J]. Eur J Orthod, 2010, 32(2): 131-139.
doi: 10.1093/ejo/cjp078
[44] Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats[J]. Lasers Surg Med, 2000, 26(3): 282-291.
doi: 10.1002/(ISSN)1096-9101
[45] Isola G, Matarese M, Briguglio F, et al. Effectiveness of low-level laser therapy during tooth movement: a randomized clinical trial[J]. Materials (Basel), 2019, 12(13): E2187.
[46] 刘琛, 许莹, 张瑾, 等. 低能量激光对人牙周膜干细胞增殖以及成骨分化的影响[J]. 山西医科大学学报, 2020, 51(9): 978-981.
Liu C, Xu Y, Zhang J, et al. Effect of low-energy laser on proliferation and osteogenic differentiation of human periodontal ligament stem cells[J]. J Shanxi Med Univ, 2020, 51(9): 978-981.
[47] Huang YY, Sharma SK, Carroll J, et al. Biphasic dose response in low level light therapy-an update[J]. Dose Response, 2011, 9(4): 602-618.
[1] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[2] Song Wenpeng,Gong Beiwen,Li Dan,Zeng Jianyu,Qiu Lingling. Research progress on the application of mechanotherapy in orthodontic treatment [J]. Int J Stomatol, 2023, 50(5): 603-612.
[3] Wang Lüya,Zhang Jingxin,Lin Jie.. Postoperative infection control effect of povidone iodine and chlorhexidine: a systematic review and analysis [J]. Int J Stomatol, 2023, 50(4): 438-444.
[4] Jiang Qingsong,Lai Wenli,Wang Yan.. Research progress on bone augmentation technique in orthodontics [J]. Int J Stomatol, 2023, 50(2): 243-250.
[5] Zhao Zhihe.. Difficulty assessment of invisible orthodontic treatment based on treatment plan and tooth movement pattern [J]. Int J Stomatol, 2022, 49(4): 373-379.
[6] Zhao Zhe,Wang Fu,Zheng Xiuli,An Na,Chen Jihua.. Research progress on measuring methods of tooth movement under functional load [J]. Int J Stomatol, 2022, 49(3): 362-366.
[7] Huang Xiaohui,Qi Benting,Yang Jie,Liu Yu,Sun Weibin. Effects of mechanical adjacent surface plaque control measures on periodontal nonsurgical treatment: a systematic review [J]. Int J Stomatol, 2021, 48(6): 656-663.
[8] Zhou Wanhang,Li Yanfei,Xu Ricong,Wan Qijun. Effects of non-surgical periodontal treatment on risk factors of chronic kidney disease and systematic inflammatory levels in patients with chronic kidney disease and periodontal disease: a Meta-analysis [J]. Int J Stomatol, 2021, 48(5): 528-535.
[9] Zhou Mengqi,Chen Xuepeng,Fu Baiping. Strategies for preventing alveolar-bone dehiscence and fenestration during orthodontic treatment [J]. Int J Stomatol, 2021, 48(5): 600-608.
[10] Zhao Zhihe. Comparison of anterior tooth torque design in digital orthodontics [J]. Int J Stomatol, 2021, 48(1): 1-6.
[11] Yin Yuanyuan,Ma Huayu,Li Xinyi,Xu Jingchen,Liu Ting,Chen Song,He Shushu. Expression of autophagy related genes in mice periodontal tissue during orthodontic tooth movement [J]. Int J Stomatol, 2020, 47(6): 627-634.
[12] Yang Hong,Jin Yu,Lai Wenli. Randomized cross-control trial of placebo in the regulation of orthodontic tooth movement pain [J]. Int J Stomatol, 2020, 47(4): 424-430.
[13] Zhao Yujie,Guan Xiaoyan,Li Xiaolan,Chen Qijun,Wang Qian,Liu Jianguo. Research progress on macrophage polarization involved in the regulation of orthodontic tooth movement [J]. Int J Stomatol, 2020, 47(4): 478-483.
[14] Li Hanyue,Xia Lulu,Hua Xianming. Clinical advances of periodontally accelerated osteogenic orthodontics [J]. Int J Stomatol, 2020, 47(2): 206-211.
[15] Song Shaohua,Mo Shuixue. Orthodontic treatment in sequential treatment of cleft lip and palate [J]. Int J Stomatol, 2019, 46(6): 740-744.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .