Int J Stomatol ›› 2022, Vol. 49 ›› Issue (2): 153-162.doi: 10.7518/gjkq.2022038

• Original Articles • Previous Articles     Next Articles

Features of condyles of adult patients with different vertical and sagittal skeletal facial types

Han Jingwen(),Ren Shiqi,Liu Xingyu,Lang Xin,Chu Mengshi,Waseem Saleh Abdo Kaid Algumaei,Zheng Yan()   

  1. School of Stomatology, Lanzhou University, Lanzhou 730000, China
  • Received:2021-08-23 Revised:2021-11-15 Online:2022-03-01 Published:2022-03-15
  • Contact: Yan Zheng E-mail:hanjw19@lzu.edu.cn;15609310015@163.com

Abstract:

Objective This study aimed to explore the correlation between the skeletal facial types and features of condyles of adult patients and provide a reference for clinical treatments by measuring and analyzing the differences in the features of condyles of adult patients with different vertical and sagittal skeletal facial types. Methods A total of 180 adult patients with a normal temporomandibular joint (TMJ) were selected and divided into nine groups according to different vertical and sagittal skeletal types according to certain criteria, including ∠ANB, ∠MP-FH and ∠MP-SN, and 20 cases were included in each group. The following parameters were measured using Invivo6: the length axis diameter of the condyle; its short axis diameter; maximum cross-sectional area; neck width; upper height; height; ramus height; ante-rior, posterior, upper, and medial joint space; posterior angle of the articular tubercle; and fossa depth and width of all the samples. Data were statistically analyzed using SPSS 23.0 to compare the differences in measurement indices among the groups. Results The patients with a low angle had a larger condyle, a larger joint space, a deeper and narrower joint fossa, a more oblique articular tubercle, and a longer ramus, whereas the patients with a high angle had opposite findings. The patients in skeletal class Ⅲ had a larger condyle, a smaller joint space, a shallower and wider articular fossa, and a flatter articular tubercle. By contrast, the patients in skeletal Ⅱ class had opposite results. Conclusion Patients in skeletal Ⅱ class with a high angle and skeletal Ⅲ class with a low angle have typical condyles related to mandibular growth. Condyle features are correlated with vertical and sagittal skeletal facial types. Vertical skeletal facial types are more strongly associated with condyle features than sagittal skeletal facial types. In clinical treatments, further stu-dies should be performed on the condyle and its surrounding structures.

Key words: condyle, temporomandibular joint, vertical skeletal facial types, sagittal skeletal facial types, adults

CLC Number: 

  • R783.5

TrendMD: 

Tab 1

Grouping criteria of different skeletal facial types"

∠MP-FH和∠MP-SN分级 0°<∠ANB<5° ∠ANB≥5° ∠ANB≤0°
∠MP-FH<22°且∠MP-SN<29° 骨性Ⅰ类低角 骨性Ⅱ类低角 骨性Ⅲ类低角
22°≤∠MP-FH≤32°且29°≤∠MP-SN≤ 40° 骨性Ⅰ类均角 骨性Ⅱ类均角 骨性Ⅲ类均角
∠MP-FH>32°且∠MP-SN>40° 骨性Ⅰ类高角 骨性Ⅱ类高角 骨性Ⅲ类高角

Tab 2

Age of each group and One-Way ANOVA n=20,$\bar{x}\pm s$"

组别 年龄/岁 P
骨性Ⅰ类低角 21.35±2.11 0.417
骨性Ⅰ类均角 21.20±1.96
骨性Ⅰ类高角 21.30±2.18
骨性Ⅱ类低角 21.15±1.90
骨性Ⅱ类均角 20.90±1.86
骨性Ⅱ类高角 21.55±2.06
骨性Ⅲ类低角 22.00±2.08
骨性Ⅲ类均角 21.15±2.50
骨性Ⅲ类高角 20.25±2.07

Tab 3

Measurement items and fixed points"

测量项目 定义 定点
髁突长轴径 髁突长轴的最大长度 外侧髁点、内侧髁点
髁突短轴径 髁突短轴的最大长度 髁突宽部最前点、髁突宽部最后点
髁突颈部宽度 髁突颈部的宽度 前颈点、后颈点
髁突上部高度 髁突顶点至髁突最宽处的垂直距离 髁突宽部最前点、髁突宽部最后点、髁突顶点
髁突高度 髁突顶点至髁突颈部的垂直距离 前颈点、后颈点、髁突顶点
升支高度 髁突顶点到升支下颌角点的距离 髁突顶点、下颌角点
关节前间隙 髁突前部与关节窝前壁的距离 关节前间隙髁点、关节前间隙窝点
关节后间隙 髁突后部与关节窝后壁的距离 关节后间隙髁点、关节后间隙窝点
关节上间隙 髁突上部与关节窝上壁的距离 髁突顶点、关节窝顶点
关节内侧间隙 髁突内侧与关节窝内侧壁的距离 关节内侧间隙髁点、关节内侧间隙窝点
关节结节后斜面角度 前关节窝线与法兰克福水平面的前角 前关节窝线上点、前关节窝线下点、眶点(左侧)、耳点
关节窝深度 关节窝顶点至关节结节最低点与耳道最低点的连线的垂直距离 关节窝顶点、关节结节最低点、耳道最低点
关节窝宽度 关节窝最前点至关节窝最后点的距离 关节窝最前点、关节窝最后点

Fig 1

The area measurement function of Invivo6 is used for measuring the maximum cross-sectional area of condyle"

Fig 2

The 3DAnalysis function of Invivo6 software is used for fixing points and measurements"

Tab 4

Results of paired-samples t test of left and right sides of each measurement item (P value)"

测量项目 Ⅰ类低角 Ⅰ类均角 Ⅰ类高角 Ⅱ类低角 Ⅱ类均角 Ⅱ类高角 Ⅲ类低角 Ⅲ类均角 Ⅲ类高角
髁突长轴径 0.588 0.893 0.763 0.278 0.323 0.348 0.650 0.194 0.467
髁突短轴径 0.243 0.421 0.496 0.512 0.520 0.901 0.222 0.329 0.302
髁突最大横截面积 0.392 0.454 0.591 0.623 0.830 0.433 0.194 0.467 0.528
髁突颈部宽度 0.503 0.299 0.934 0.680 0.729 0.456 0.481 0.376 0.211
髁突上部高度 0.914 0.834 0.516 0.624 0.488 0.930 0.377 0.504 0.338
髁突高度 0.577 0.426 0.899 0.567 0.526 0.496 0.491 0.840 0.672
升支高度 0.089 0.146 0.176 0.532 0.546 0.082 0.253 0.413 0.294
关节前间隙 0.357 0.860 0.230 0.617 0.468 0.045* 0.764 0.670 0.923
关节后间隙 0.635 0.802 0.214 0.677 0.386 0.992 0.284 0.679 0.908
关节上间隙 0.376 0.251 0.362 0.121 0.062 0.530 0.074 0.167 0.344
关节内侧间隙 0.485 0.246 0.156 0.411 0.433 0.862 0.596 0.115 0.079
关节结节后斜面角度 0.041* 0.039* 0.447 0.080 0.730 0.092 0.164 0.162 0.348
关节窝深度 0.754 0.583 0.485 0.398 0.537 0.260 0.147 0.472 0.346
关节窝宽度 0.212 0.405 0.528 0.433 0.594 0.629 0.324 0.583 0.294

Tab 5

Results of each measurement item of each group $\bar{x}\pm s$"

测量项目 骨性Ⅰ类 骨性Ⅱ类 骨性Ⅲ类
低角 均角 高角 低角 均角 高角 低角 均角 高角
髁突长轴径/mm 19.47±2.51 19.24±2.18 17.75±2.20 19.68±1.89 19.05±2.11 19.57±2.71 20.64±2.86 19.75±1.51 18.43±1.84
髁突短轴径/mm 9.94±1.44 9.66±1.59 9.57±1.42 10.24±1.41 9.74±1.27 9.03±1.52 11.03±1.53 9.29±1.11 9.26±1.45
髁突最大横截面积/mm2 113.18±18.32 105.31±22.43 90.14±19.83 113.42±19.31 102.75±22.33 93.59±23.38 126.63±33.36 107.77±15.61 98.37±21.39
髁突颈部宽度/mm 8.24±1.06 7.57±0.98 7.79±1.23 8.31±1.15 7.97±1.17 7.43±1.33 8.78±0.83 7.94±1.00 8.13±1.06
髁突上部高度/mm 5.19±1.46 4.67±1.63 4.70±1.91 5.63±6.44 5.01±1.64 5.14±1.30 3.62±1.41 5.03±1.07 4.21±0.70
髁突高度/mm 8.95±2.20 9.65±2.06 9.28±1.82 9.41±1.37 9.69±1.81 9.40±1.18 8.92±0.90 10.86±2.42 8.85±0.76
升支高度/mm 58.32±3.99 53.38±7.40 54.40±3.90 58.86±3.37 52.78±3.56 52.56±1.87 60.55±2.03 53.37±3.40 53.50±2.42
关节前间隙/mm 2.54±0.64 2.34±0.77 2.41±0.70 2.72±0.78 2.56±0.78 2.28±0.67 2.46±0.83 2.21±0.75 2.06±0.64
关节后间隙/mm 2.93±0.88 2.51±0.64 2.63±0.80 2.99±0.91 2.76±0.85 3.07±1.25 2.68±0.79 2.50±0.66 2.67±0.71
关节上间隙/mm 3.65±0.69 3.32±0.86 2.94±0.96 4.07±0.85 3.41±0.97 3.53±1.21 3.47±0.90 3.11±0.77 2.52±0.75
关节内侧间隙/mm 3.09±1.08 2.56±0.67 2.65±0.93 3.79±1.58 2.77±0.91 2.60±0.74 2.67±0.84 2.51±0.87 2.19±0.68
关节结节后斜面角度/° 51.23±10.45 50.58±12.57 45.86±13.50 53.02±10.21 52.04±11.53 51.47±16.33 47.41±11.47 48.35±10.41 40.80±13.46
关节窝深度/mm 9.65±1.07 9.47±1.51 9.39±1.20 9.49±1.81 9.01±1.15 7.40±1.19 8.56±0.48 9.00±0.99 6.98±1.52
关节窝宽度/mm 16.04±2.10 16.49±2.32 17.45±1.53 15.94±1.52 16.07±1.40 15.46±1.87 16.92±1.33 15.60±1.64 18.11±1.46

Tab 6

Statistical results of each measurement item in different vertical skeletal facial types (P value)"

测量项目 骨性Ⅰ类 骨性Ⅱ类 骨性Ⅲ类
P低-均 P低-高 P均-高 P低-均 P低-高 P均-高 P低-均 P低-高 P均-高
髁突长轴径/mm 0.895 0.003** 0.012* 0.343 0.000** 0.294 0.000** 0.002** 0.022*
髁突短轴径/mm 0.667 0.507 0.965 0.250 0.001** 0.000** 0.000** 0.992 0.068
髁突最大横截面积/mm2 0.196 0.002** 0.173 0.077 0.000** 0.006** 0.000** 0.206 0.148
髁突颈部宽度/mm 0.015* 0.148 0.606 0.420 0.005** 0.001** 0.010* 0.663 0.126
髁突上部高度/mm 0.354 0.392 0.997 0.755 0.840 0.000** 0.049* 0.003** 0.987
髁突高度/mm 0.272 0.744 0.694 0.674 1.000 0.000** 0.909 0.000** 0.665
升支高度/mm 0.002* 0.000** 0.809 0.000** 0.001** 0.000** 0.000** 0.993 0.442
关节前间隙/mm 0.417 0.674 0.908 0.605 0.025* 0.309 0.048* 0.629 0.212
关节后间隙/mm 0.048* 0.196 0.789 0.550 0.947 0.502 0.998 0.541 0.366
关节上间隙/mm 0.184 0.001* 0.114 0.013* 0.049* 0.111 0.000** 0.005** 0.872
关节内侧间隙/mm 0.026* 0.133 0.854 0.002** 0.000** 0.696 0.027* 0.171 0.630
关节结节后斜面角度/° 0.969 0.126 0.200 0.908 0.982 0.933 0.037* 0.014* 0.872
关节窝深度/mm 0.807 0.628 0.953 0.282 0.000** 0.173 0.000** 0.000** 0.000**
关节窝宽度/mm 0.577 0.006** 0.089 0.939 0.372 0.000** 0.001** 0.000** 0.212

Tab 7

Statistical results of each measurement item in different sagittal skeletal facial types (P value)"

测量项目 低角 均角 高角
PⅠ-Ⅱ PⅠ-Ⅲ PⅡ-Ⅲ PⅠ-Ⅱ PⅠ-Ⅲ PⅡ-Ⅲ PⅠ-Ⅱ PⅠ-Ⅲ PⅡ-Ⅲ
髁突长轴径/mm 0.911 0.131 0.182 0.914 0.454 0.210 0.942 0.288 0.220
髁突短轴径/mm 0.632 0.003** 0.046* 0.965 0.465 0.223 0.229 0.601 0.773
髁突最大横截面积/mm2 0.998 0.073 0.085 0.841 0.852 0.516 0.743 0.965 0.584
髁突颈部宽度/mm 0.942 0.052 0.110 0.207 0.252 0.993 0.366 0.408 0.025*
髁突上部高度/mm 0.864 0.177 0.059 0.556 0.510 0.997 0.442 0.292 0.000**
髁突高度/mm 0.502 0.998 0.156 0.996 0.048* 0.044* 0.931 0.353 0.038*
升支高度/mm 0.011* 0.009** 0.000** 0.810 1.000 0.569 0.438 0.427 0.990
关节前间隙/mm 0.170 0.952 0.289 0.412 0.740 0.113 0.663 0.059 0.323
关节后间隙/mm 0.938 0.414 0.244 0.287 0.998 0.258 0.153 0.726 0.037*
关节上间隙/mm 0.063 0.591 0.004* 0.884 0.518 0.263 0.025* 0.148 0.000**
关节内侧间隙/mm 0.061 0.121 0.001* 0.495 0.971 0.363 0.948 0.034* 0.033*
关节结节后斜面角度/° 0.897 0.269 0.112 0.607 0.663 0.168 0.074 0.170 0.000**
关节窝深度/mm 0.878 0.000** 0.008** 0.303 0.305 0.991 0.000** 0.000** 0.142
关节窝宽度/mm 0.968 0.074 0.009** 0.583 0.117 0.347 0.000** 0.174 0.000**
[1] Rodrigues AF, Fraga MR, Vitral RW. Computed tomography evaluation of the temporomandibular joint in class Ⅱ division 1 and class Ⅲ malocclusion patients: condyle symmetry and condyle-fossa relationship[J]. Am J Orthod Dentofacial Orthop, 2009, 136(2): 199-206.
doi: 10.1016/j.ajodo.2007.07.033
[2] 王洋, 王大为. 机械应力作用下髁突生长因子表达的研究进展[J/CD]. 中华口腔医学研究杂志(电子版), 2008, 2(4): 409-413.
Wang Y, Wang DW. Regulation of growth factors to the mandibular condyle under mechanical loading[J/CD]. Chin J Stomatol Res (Electron Ed), 2008, 2(4): 409-413.
[3] 朱房勇, 兰柳萍, 胡瑜, 等. 髁突颈部骨折对下颌骨生长发育的影响[J]. 中国实用口腔科杂志, 2009, 2(7): 440-442.
Zhu FY, Lan LP, Hu Y, et al. Effect of condylar neck fractures on growth and development of mandible[J]. Chin J Pract Stomatol, 2009, 2(7): 440-442.
[4] 李松. 下颌髁突状软骨与生长板软骨生长发育的比较研究[J]. 昆明医科大学学报, 2014, 35(2): 1-4.
Li S. Comparative study on the growth and development of mandibular condyle cartilage and growth plate cartilage[J]. J Kunming Med Univ, 2014, 35(2): 1-4.
[5] 陈洁, 段余峰, 涂景秋, 等. 不同垂直骨面型骨性Ⅲ类患者颞下颌关节三维形态结构的比较[J]. 中南大学学报(医学版), 2018, 43(6): 625-630.
Chen J, Duan YF, Tu JQ, et al. Three-dimensional morphological features of temporomandibular joint in skeletal malocclusion class Ⅲ patients with different vertical skeletal facial types[J]. J Central South Univ (Med Sci), 2018, 43(6): 625-630.
[6] Kim SE, Kim JD. A radiographic study of temporomandibular joints in skeletal class Ⅲmalocclusion[J]. Korean J Oral Maxillofac Radiol, 2003, 33(2): 85-90.
[7] 田园. 青少年骨性Ⅱ类错𬌗不同垂直骨面型患者的髁突形态特点及差异性[J]. 中国药物与临床, 2009, 9(12): 1243-1244.
Tian Y. Condylar morphological characteristics and differences of adolescent skeletal class Ⅱ malocclusion with different vertical facial types[J]. Chin Remed Clin, 2009, 9(12): 1243-1244.
[8] 陆兴岭, 刘博, 赵丹, 等. 成人安氏Ⅰ、安氏Ⅱ和安氏Ⅲ类错𬌗畸形患者髁突位置的CBCT对比研究[J]. 中国医疗美容, 2018, 8(2): 67-70.
Lu XL, Liu B, Zhao D, et al. A CBCT comparative study of condylar position in adult patients with Angle classⅠ, class Ⅱ and class Ⅲ malocclusion[J]. China Med Cosmetol, 2018, 8(2): 67-70.
[9] 王欢, 丁寅. 不同垂直骨面型成年骨性Ⅲ类患者的髁突形态特点及差异[J]. 临床口腔医学杂志, 2006, 22(11): 673-675.
Wang H, Ding Y. Condylar morphology of the adults with different vertical facial types of skeletal Ⅲ malocclusions[J]. J Clin Stomatol, 2006, 22(11): 673-675.
[10] Park IY, Kim JH, Park YH. Three-dimensional cone-beam computed tomography based comparison of condylar position and morphology according to the vertical skeletal pattern[J]. Korean J Orthod, 2015, 45(2): 66-73.
doi: 10.4041/kjod.2015.45.2.66
[11] 樊佳兵, 张军梅. 成年女性不同垂直骨面型下颌骨形态的测量分析[J]. 中国组织工程研究, 2021, 25(8): 1177-1183.
Fan JB, Zhang JM. Morphological measurement and analysis of the mandible in adult females with different vertical skeletal types[J]. Chin J Tissue Eng Res, 2021, 25(8): 1177-1183.
[12] 韩保迪, 栗震亚, 陈红. 安氏Ⅰ类错𬌗不同垂直骨面型下颌骨形态的比较研究[J]. 现代口腔医学杂志, 2008, 22(3): 239-242.
Han BD, Li ZY, Chen H. Morphometric study of the mandible shape of the subjects with class Ⅰ skeletal pattern in the three verticle facial types[J]. J Modern Stomatol, 2008, 22(3): 239-242.
[13] 赵营, 王建国, 魏志强. 骨性Ⅱ类错𬌗畸形患者不同垂直骨面型下颌骨三维形态特征研究[J]. 天津医科大学学报, 2015, 21(4): 342-344.
Zhao Y, Wang JG, Wei ZQ. Three dimensional morphological characteristics of mandible with different vertical skeletal types in patients with skeletal class Ⅱmalocclusion[J]. J Tianjin Med Univ, 2015, 21(4): 342-344.
[14] 舒艳, 刘珺, 陈杰, 等. 成人骨性Ⅲ类错𬌗不同垂直骨面型下颌骨及颏部的比较[J]. 上海口腔医学, 2011, 20(2): 191-195.
Shu Y, Liu J, Chen J, et al. Comparison of mandibular and chin morphology in adults with skeletal class Ⅲ malocclusion in different vertical facial types[J]. Shanghai J Stomatol, 2011, 20(2): 191-195.
[15] Siriwat PP, Jarabak JR. Malocclusion and facial morphology is there a relationship? An epidemiolo-gic study[J]. Angle Orthod, 1985, 55(2): 127-138.
pmid: 3874569
[16] Celikoglu M, Yavuz I, Unal T, et al. Comparison of the soft and hard tissue effects of two different protraction mechanisms in class Ⅲ patients: a randomi-zed clinical trial[J]. Clin Oral Investig, 2015, 19(8): 2115-2122.
doi: 10.1007/s00784-015-1408-5
[17] Nakawaki T, Yamaguchi T, Tomita D, et al. Evaluation of mandibular volume classified by vertical skeletal dimensions with cone-beam computed tomography[J]. Angle Orthod, 2016, 86(6): 949-954.
doi: 10.2319/103015-732.1
[18] Björk A. Prediction of mandibular growth rotation[J]. Am J Orthod, 1969, 55(6): 585-99.
pmid: 5253957
[19] 李放, 王建国. 不同垂直骨面型安氏Ⅰ类成年患者颞下颌关节形态特征的锥形束CT研究[J]. 国际口腔医学杂志, 2015, 42(5): 538-541.
Li F, Wang JG. Cone beam computed tomography analysis of temporomandibular joint morphology in adult Angle’s class Ⅰ malocclusions with different vertical skeletal features[J]. Int J Stomatol, 2015, 42(5): 538-541.
[20] 叶艳艳. 成人骨性Ⅱ类患者颅颌面特征及手术指征的判别分析[D]. 西安: 第四军医大学, 2013.
Ye YY. Craniomaxillofacial characteristics of adult skeletal class Ⅱ patients and discriminant analysis of surgical and non-surgical treatment[D]. Xi’an: The Fourth Millitary Medical University, 2013.
[21] Hasebe A, Yamaguchi T, Nakawaki T, et al. Compari-son of condylar size among different anteroposterior and vertical skeletal patterns using cone-beam computed tomography[J]. Angle Orthod, 2019, 89(2): 306-311.
doi: 10.2319/032518-229.1
[22] 葛胜将, 侯凤春, 刘静, 等. 不同垂直骨面型成人骨性Ⅱ1类错𬌗女性髁突形态CBCT研究[J]. 青岛大学医学院学报, 2015, 51(4): 477-479, 482.
Ge SJ, Hou FC, Liu J, et al. Morphology of adult female with skeletal class Ⅱ1 malocclusions of diffe-rent vertical features: cone beam computed tomography study[J]. Acta Acad Med Qingdao Univ, 2015, 51(4): 477-479, 482.
[23] Saccucci M, Polimeni A, Festa F, et al. Do skeletal cephalometric characteristics correlate with condylar volume, surface and shape? A 3D analysis[J]. Head Face Med, 2012, 8: 15.
doi: 10.1186/1746-160X-8-15 pmid: 22587445
[24] Burke G, Major P, Glover K, et al. Correlations between condylar characteristics and facial morphology in class Ⅱ preadolescent patients[J]. Am J Orthod Dentofacial Orthop, 1998, 114(3): 328-336.
doi: 10.1016/S0889-5406(98)70216-1
[25] Kubota M, Nakano H, Sanjo I, et al. Maxillofacial morphology and masseter muscle thickness in adults[J]. Eur J Orthod, 1998, 20(5): 535-542.
doi: 10.1093/ejo/20.5.535
[26] 高辉, 肖丹娜, 赵志河, 等. 成人高低角骨面型浅层咬肌不同功能位置形态的比较[J]. 实用口腔医学杂志, 2005, 21(6): 804-807.
Gao H, Xiao DN, Zhao ZH, et al. Comparison of superficial masseter muscle morphology between adult high-angle and low-angle facial skeletal types[J]. J Pract Stomatol, 2005, 21(6): 804-807.
[27] Rowlerson A, Raoul G, Daniel Y, et al. Fiber-type differences in masseter muscle associated with different facial morphologies[J]. Am J Orthod Dentofacial Orthop, 2005, 127(1): 37-46.
doi: 10.1016/j.ajodo.2004.03.025
[28] Kiliaridis S. Masticatory muscle influence on craniofacial growth[J]. Acta Odontol Scand, 1995, 53(3): 196-202.
pmid: 7572097
[29] Chen T, Liu Z, Xue C, et al. Association of dysplastic coronoid process with long-face morphology[J]. J Dent Res, 2020, 99(3): 339-348.
doi: 10.1177/0022034519892551 pmid: 31826728
[30] 肖丹娜, 高辉. 嚼肌功能形态与垂直颅面结构的关系[J]. 国外医学·口腔医学分册, 2004, 31(2): 135-137.
Xiao DN, Gao H. The relationship between the functional morphology of masseter muscle and the vertical craniofacial structure[J]. Foreign Med Sci (Stomatol), 2004, 31(2): 135-137.
[31] 庾英姿, 米丛波. 咀嚼肌形态和功能与颅面形态关系研究进展[J]. 中国实用口腔杂志, 2012, 5(5): 315-318.
Yu YZ, Mi CB. Research progress on relationship of masticatory muscle morphology and function with craniofacial morphology[J]. Chin J Pract Stomatol, 2012, 5(5): 315-318.
[32] 李晨, 李永刚, 冯雪. 骨性Ⅱ类高角成年女性颞下颌关节骨性结构的三维研究[J]. 实用口腔医学杂志, 2016, 32(2): 239-243.
Li C, Li YG, Feng X. Three dimensional assessment of the temporomandibular joint in skeletal class Ⅱ malocclusion females with high vertical pattern[J]. J Pract Stomatol, 2016, 32(2): 239-243.
[33] Bench RW, Gugino CF, Hilgers JJ. Bio-progressive therapy[J]. J Clin Orthod, 1977, 11(9): 616-627.
[34] Hönicke K, Harzer W, Eckardt L. The relationships between the EMG excitation pattern of the masseter muscle and the facial skeletal morphology[J]. Fortschr Kieferorthop, 1995, 56(5): 237-244.
pmid: 7557796
[35] Kikuchi K, Takeuchi S, Tanaka E, et al. Association between condylar position, joint morphology and craniofacial morphology in orthodontic patients without temporomandibular joint disorders[J]. J Oral Rehabil, 2003, 30(11): 1070-1075.
pmid: 14641670
[36] Pullinger AG, Solberg WK, Hollender L, et al. Relationship of mandibular condylar position to dental occlusion factors in an asymptomatic population[J]. Am J Orthod Dentofacial Orthop, 1987, 91(3): 200-206.
doi: 10.1016/0889-5406(87)90447-1
[37] Seren E, Akan H, Toller MO, et al. An evaluation of the condylar position of the temporomandibular joint by computerized tomography in classⅢ malocclusions: a preliminary study[J]. Am J Orthod Dentofacial Orthop, 1994, 105(5): 483-488.
doi: 10.1016/S0889-5406(94)70009-5
[38] 崔涛, 杜雨晴, 宋宇, 等. 不同矢状骨性错𬌗畸形高角型成年女性患者髁突位置的CBCT研究[J]. 口腔疾病防治, 2018, 26(3): 180-183.
Cui T, Du YQ, Song Y, et al. Cone-beam computed tomography study of condyle position in high-angle adult female patients with different sagittal skeletal malocclusion[J]. J Prev Treat Stomatol Dis, 2018, 26(3): 180-183.
[39] Katsavrias EG, Halazonetis DJ. Condyle and fossa shape in class,Ⅱand class Ⅲ skeletal patterns: a morphometric tomographic study[J]. Am J Orthod Dentofacial Orthop, 2005, 128(3): 337-346.
doi: 10.1016/j.ajodo.2004.05.024
[40] Arnett GW, Bergman RT. Facial keys to orthodontic diagnosis and treatment planning. PartⅠ[J]. Am J Orthod Dentofacial Orthop, 1993, 103(4): 299-312.
doi: 10.1016/0889-5406(93)70010-L
[41] Franchi L, Pavoni C, Faltin K, et al. Thin-plate spline analysis of mandibular shape changes induced by functional appliances in classⅡmalocclusion: a long-term evaluation[J]. J Orofac Orthop, 2016, 77(5): 325-333.
doi: 10.1007/s00056-016-0041-5
[1] Zhang Zhe,Liu Jin,Wang Weihong,Chen Zhiqiang,Yang Chun,Liu Li. Calcium pyrophosphate deposition disease complicated by temporomandibular joint dislocation [J]. Int J Stomatol, 2021, 48(6): 664-667.
[2] Fang Lingli,Tan Xi,Ye Yusi,Huang Lan,He Yao. Experimental study on behavior changes of condylar chondrocytes in early stage of temporomandibular joint degeneration [J]. Int J Stomatol, 2021, 48(4): 417-425.
[3] Yin Xiaoli,Liu Yang,Wang Jun. Internal structural changes of the temporomandibular joint associated with mandibular lateral displacement [J]. Int J Stomatol, 2020, 47(5): 567-573.
[4] Lin Yangyang,Hou Min. Effect of bilateral sagittal split ramus osteotomy operation on the displacement of proximal segment of mandible [J]. Int J Stomatol, 2019, 46(6): 718-723.
[5] Jun Guo,Wei Fei,Qinghua Li. Animal research for the prognostic mechanism of traumatic temporomandibular joint ankyloses [J]. Inter J Stomatol, 2019, 46(1): 12-19.
[6] Li Jing, Liu Xingchen, Li Jiayuan, Li Xiaobing. Stabilization splint treatment for chronic temporomandibular joint disk displacement without reduction: a systematic review based on randomized controlled trials [J]. Inter J Stomatol, 2017, 44(4): 405-410.
[7] Liu Yang, Zhao Hanchi. Rehabilitation of worn dentition complicated by clicking joint [J]. Inter J Stomatol, 2017, 44(1): 11-18.
[8] Hu Xinxin, Zhu Yaomin, Zheng Cangshang. Research progress on idiopathic condylar resorption [J]. Inter J Stomatol, 2016, 43(4): 412-416.
[9] Lü Chunxiao, Chen Song. Correlation between clinical diagnosis and magnetic resonance imaging findings of temporomandibular joint disorder [J]. Inter J Stomatol, 2016, 43(1): 47-.
[10] Yang Wenying1, Zhang Wenli1, Luo Yingwei2. . Research progress on the animal model of temporomandibular joint osteoarthritis [J]. Inter J Stomatol, 2015, 42(6): 677-680.
[11] Li Fang, Wang Jianguo. Cone beam computed tomography analysis of temporomandibular joint morphology in adult Angle’s Class Ⅰ malocclusions with different vertical skeletal features [J]. Inter J Stomatol, 2015, 42(5): 538-541.
[12] Chen Qi, Wu Yun. Therapeutic evaluation of Zhongtongan in the treatment of temporomandibular joint pain after radiotherapy [J]. Inter J Stomatol, 2015, 42(1): 24-27.
[13] Xiao Peng1, Wang Bing1, Huang Xu1, Liu Haixia1, Wang Hong2. Correlation analysis between masseter muscle activity and temporomandibular joint disease in stressed rats [J]. Inter J Stomatol, 2014, 41(4): 406-408.
[14] Yao Jun, Liu Conghua.. Using cone-beam computed tomography in quantitative studies on the structure of the temporomandibular joint [J]. Inter J Stomatol, 2014, 41(1): 52-56.
[15] Yin Jian1, Liao Shuang1, Zhang Weihua2, He Jia3, Wang Hang1.. Histological study on the intra-articular injection of glucosamine in the temporomandibular joint osteoarthritis treatment of rabbits [J]. Inter J Stomatol, 2014, 41(1): 36-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .