Int J Stomatol ›› 2020, Vol. 47 ›› Issue (6): 627-634.doi: 10.7518/gjkq.2020091

• Original Articles • Previous Articles     Next Articles

Expression of autophagy related genes in mice periodontal tissue during orthodontic tooth movement

Yin Yuanyuan(),Ma Huayu,Li Xinyi,Xu Jingchen,Liu Ting,Chen Song,He Shushu()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-02-06 Revised:2020-07-09 Online:2020-11-01 Published:2020-11-06
  • Contact: Shushu He E-mail:1042520312@qq.com;heshushu-03@163.com
  • Supported by:
    National Natural Science Foundation of China(81671021)

Abstract:

Objective To investigate the level of autophagy related genes in periodontal tissue during orthodontic tooth movement in an experimental C57B/6 mice model and explore the role of autophagy related genes in bone modeling during orthodontic tooth movement. Methods Thirty-11-week-old male C57B/6 mice were randomly divided into 3 groups. Each group contained 10 mice. The experimental model of orthodontic tooth movement was established in group A by applying active force-loading nickel-titanium springs. Springs were placed in group B without force loading. Group C served as blank group. All the springs were placed between the left maxillary first molar and incisor. The mice were sacrificed on day 12, and the left lateral maxillae were collected to prepare sample sections of the periodontal tissue of the left maxillary first molars. Tooth movement was measured via microcomputed tomography. Hematoxylin and eosin (HE) staining, tartrate-resistant acid phosphatase (TRAP) staining, and real-time quantitative polymerase chain reaction (RT-qPCR) were performed, and the expression levels of bone modeling-related genes [osteoprotegerin (OPG) and receptor activator of nuclear factor-κ B ligand (RANKL)] and autophagy related genes (including Atg5, Atg7 and Beclin-1) were detected. Results The mean distance of first molar tooth movement was 0.09 mm in group A. HE staining showed that the amount of periodontal space between the pressure side and tension side of the first molars differed in group A. TRAP staining showed the presence of TRAP-positive cells in the pressure side of the first molar, and the number of osteoclasts in the pressure side was higher than that in the tension side (P<0.05). RT-qPCR results indicated that compared with those in group B, the messenger RNA (mRNA) expression of OPG in the periodontal tissue of group A decreased, whereas the mRNA expression levels of RANKL, Atg5, Atg7 and Beclin-1 increased (P<0.05). Conclusion Autophagy related genes increased in periodontal tissues under orthodontic force. Autophagy may play an important role in bone modeling during orthodontic tooth movement by regulating osteoclastogenesis.

Key words: C57B/6 mice, orthodontic tooth movement, autophagy, messenger RNA, bone modeling

CLC Number: 

  • R783.5

TrendMD: 

Fig 1

Establishment of the tooth movement model"

Tab 1

Primers for PCR analysis of mice"

引物 序列
Mus GAPDH-F CGAGAATGGGAAGCTTGTCA
Mus GAPDH-R TTGGCTCCACCCTTCAAGT
Mus OPG-F GCACAGTGAGGAGGAAGACA
Mus OPG-R TGTGTTTCGCTCTGGGGTT
Mus RANKL-F ACACCTCACCATCAATGCTG
Mus RANKL-R TCCCGATGTTTCATGATGC
Mus Atg5-F GCCATCAACCGGAAACTC
Mus Atg5-R CAAGTGTGTGCAGCTGTCCA
Mus Atg7-F AAACCCCATGCTCCTCAACA
Mus Atg7-R GATCCAAGCTCACAGGTCCC
Mus Beclin-1-F ACGCTGTTTGGAGATCCTAG
Mus Beclin-1-R TTCGTCATCCAACTCCAGCT

Fig 2

MicroCT images of the first molars × 400"

Fig 3

Morphology of periodontal tissues of the first molars HE staining × 200"

Fig 4

Osteoclasts observation of the first molars TRAP staining × 200"

Fig 5

TRAP-positive osteoclasts number of the first molars"

Fig 6

Relative expression levels of OPG, RANKL, Atg5, Atg7 and Beclin-1 mRNA of the first molars"

[1] Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement[J]. Am J Orthod Dentofacial Orthop, 2006,129(4):458-468.
pmid: 16627170
[2] Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement[J]. J Dent Res, 2009,88(7):597-608.
doi: 10.1177/0022034509338914 pmid: 19641146
[3] Mizushima N. Autophagy: process and function[J]. Genes Dev, 2007,21(22):2861-2873.
pmid: 18006683
[4] Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008,132(1):27-42.
doi: 10.1016/j.cell.2007.12.018 pmid: 18191218
[5] Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, et al. Autophagy in bone: self-eating to stay in balance[J]. Ageing Res Rev, 2015,24(Pt B):206-217.
doi: 10.1016/j.arr.2015.08.004 pmid: 26318060
[6] Jaber FA, Khan NM, Ansari MY, et al. Autophagy plays an essential role in bone homeostasis[J]. J Cell Physiol, 2019,234(8):12105-12115.
pmid: 30820954
[7] He D, Kou X, Luo Q, et al. Enhanced M1/M2 ma-crophage ratio promotes orthodontic root resorption[J]. J Dent Res, 2015,94(1):129-139.
pmid: 25344334
[8] Ren YJ, Maltha JC, Kuijpers-Jagtman AM. The rat as a model for orthodontic tooth movement: a critical review and a proposed solution[J]. Eur J Orthod, 2004,26(5):483-490.
doi: 10.1093/ejo/26.5.483 pmid: 15536836
[9] Norton LA, Burstone CJ. The biology of tooth move-ment[M]. Boca Raton: CRC Press, 1989: 321-334.
[10] Ren YJ, Maltha JC, Kuijpers-Jagtman AM. Optimum force magnitude for orthodontic tooth movement: a systematic literature review[J]. Angle Orthod, 2003,73(1):86-92.
doi: 10.1043/0003-3219(2003)073<0086:OFMFOT>2.0.CO;2 pmid: 12607860
[11] Gonzales C, Hotokezaka H, Yoshimatsu M, et al. Force magnitude and duration effects on amount of tooth movement and root resorption in the rat molar[J]. Angle Orthod, 2008,78(3):502-509.
doi: 10.2319/052007-240.1 pmid: 18416627
[12] Yoshimatsu M, Shibata Y, Kitaura H, et al. Experimental model of tooth movement by orthodontic force in mice and its application to tumor necrosis factor receptor-deficient mice[J]. J Bone Miner Metab, 2006,24(1):20-27.
doi: 10.1007/s00774-005-0641-4 pmid: 16369894
[13] Fujimura Y, Kitaura H, Yoshimatsu M, et al. In-fluence of bisphosphonates on orthodontic tooth movement in mice[J]. Eur J Orthod, 2009,31(6):572-577.
doi: 10.1093/ejo/cjp068 pmid: 19840975
[14] Yoshimatsu M, Kitaura H, Fujimura Y, et al. Inhibi-tory effects of IL-12 on experimental tooth move-ment and root resorption in mice[J]. Arch Oral Biol, 2012,57(1):36-43.
doi: 10.1016/j.archoralbio.2011.07.006 pmid: 21821230
[15] Chung CJ, Soma K, Rittling SR, et al. OPN de-ficiency suppresses appearance of odontoclastic cells and resorption of the tooth root induced by experimental force application[J]. J Cell Physiol, 2008,214(3):614-620.
doi: 10.1002/jcp.21250 pmid: 17894420
[16] King JS, Veltman DM, Insall RH. The induction of autophagy by mechanical stress[J]. Autophagy, 2011,7(12):1490-1499.
doi: 10.4161/auto.7.12.17924 pmid: 22024750
[17] Ma KG, Shao ZW, Yang SH, et al. Autophagy is activated in compression-induced cell degeneration and is mediated by reactive oxygen species in nucleus pulposus cells exposed to compression[J]. Osteoarthr Cartil, 2013,21(12):2030-2038.
doi: 10.1016/j.joca.2013.10.002
[18] Baskaran R, Poornima P, Priya LB, et al. Neferine prevents autophagy induced by hypoxia through activation of Akt/mTOR pathway and Nrf2 in muscle cells[J]. Biomed Pharmacother, 2016,83:1407-1413.
doi: 10.1016/j.biopha.2016.08.063 pmid: 27583981
[19] Memmert S, Damanaki A, Weykopf B, et al. Auto-phagy in periodontal ligament fibroblasts under biomechanical loading[J]. Cell Tissue Res, 2019,378(3):499-511.
doi: 10.1007/s00441-019-03063-1 pmid: 31352550
[20] 周云. 正畸牙齿移动过程中牙周膜成纤维细胞自噬作用的初步研究[D]. 西安: 第四军医大学, 2014.
Zhou Y. Study on autophagy in hPDLCs during orthodontic tooth movement[D]. Xi’an: The Fourth Military Medical University, 2014.
[21] Glick D, Barth S, MacLeod KF. Autophagy: cellular and molecular mechanisms[J]. J Pathol, 2010,221(1):3-12.
doi: 10.1002/path.2697 pmid: 20225336
[22] Chen LY, Mo SZ, Hua YM. Compressive force-induced autophagy in periodontal ligament cells downregulates osteoclastogenesis during tooth movement[J]. J Periodontol, 2019,90(10):1170-1181.
pmid: 31077358
[23] Kuballa P, Nolte WM, Castoreno AB, et al. Auto-phagy and the immune system[J]. Annu Rev Immunol, 2012,30:611-646.
pmid: 22449030
[24] Zhao Y, Chen G, Zhang W, et al. Autophagy re-gulates hypoxia-induced osteoclastogenesis through the HIF-1α/BNIP3 signaling pathway[J]. J Cell Physiol, 2012,227(2):639-648.
doi: 10.1002/jcp.22768 pmid: 21465467
[25] Shi J, Wang L, Zhang HY, et al. Glucocorticoids: dose-related effects on osteoclast formation and function via reactive oxygen species and autophagy[J]. Bone, 2015,79:222-232.
pmid: 26115910
[26] Wijekoon S, Bwalya EC, Fang J, et al. Chronological differential effects of pro-inflammatory cytokines on RANKL-induced osteoclast differentiation of canine bone marrow-derived macrophages[J]. J Vet Med Sci, 2017,79(12):2030-2035.
doi: 10.1292/jvms.17-0393 pmid: 29109351
[27] 吕佳岭, 徐洁, 曾锦, 等. 正畸牙压力区牙周膜细胞自噬相关蛋白Beclin-1与微管相关蛋白2轻链3的表达[J]. 华西口腔医学杂志, 2019,37(2):168-173.
Lü JL, Xu J, Zeng J, et al. Expression of auto-phagy-related protein Beclin-1 and microtubule-associated protein 2 light chain 3 in periodontal ligament cells in orthodontic tooth pressure areas[J]. West China J Stomatol, 2019,37(2):168-173.
[28] Alhashimi N, Frithiof L, Brudvik P, et al. Ortho-dontic tooth movement and de novo synjournal of proinflammatory cytokines[J]. Am J Orthod Dento-facial Orthop, 2001,119(3):307-312.
[29] Nollet M, Santucci-Darmanin S, Breuil V, et al. Au-tophagy in osteoblasts is involved in mineralization and bone homeostasis[J]. Autophagy, 2014,10(11):1965-1977.
doi: 10.4161/auto.36182 pmid: 25484092
[30] Li HX, Li DH, Ma ZM, et al. Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss[J]. Autophagy, 2018,14(10):1726-1741.
doi: 10.1080/15548627.2018.1483807 pmid: 29962255
[31] Yamaguchi M. RANK/RANKL/OPG during ortho-dontic tooth movement[J]. Orthod Craniofac Res, 2009,12(2):113-119.
doi: 10.1111/j.1601-6343.2009.01444.x pmid: 19419454
[1] Ye Yulin,Jiang Liting,Gao Yiming.. Role of autophagy in salivary glands of Sjögren’s syndrome [J]. Int J Stomatol, 2022, 49(5): 556-560.
[2] Li Guiping,Qin Xu,Zhu Guangxun.. Research progress on adenosine monophosphate-activated protein kinase in periodontal disease [J]. Int J Stomatol, 2022, 49(3): 343-348.
[3] Fang Lingli,Tan Xi,Ye Yusi,Huang Lan,He Yao. Experimental study on behavior changes of condylar chondrocytes in early stage of temporomandibular joint degeneration [J]. Int J Stomatol, 2021, 48(4): 417-425.
[4] Zhou Feng,Chen Ye,Chen Chen,Zhang Yining,Geng Ruiman,Liu Ji. Mechanism of sirtuin 1 in regulating periodontitis [J]. Int J Stomatol, 2021, 48(3): 341-346.
[5] Zhao Yujie,Guan Xiaoyan,Li Xiaolan,Chen Qijun,Wang Qian,Liu Jianguo. Research progress on macrophage polarization involved in the regulation of orthodontic tooth movement [J]. Int J Stomatol, 2020, 47(4): 478-483.
[6] Zhu Junjin,Zhou Jiaqi,Wu Yingying. Function of autophagy induced by mammalian target of rapamycin complex 1 in bone metabolism [J]. Int J Stomatol, 2020, 47(1): 84-89.
[7] Ya Yang,Peng Chen,Hongwei Dai,Lin Zhang. Change in expression of transformation growth factor-β/Smad signalling pathway-related proteins in epithelial rests of Malassez during orthodontic tooth movement in rats [J]. Int J Stomatol, 2019, 46(3): 270-276.
[8] Zhang Peng, Ding Yi, Wang Qi. Research on the role of inflammaging in diabetes mellitus-associated periodontitis [J]. Inter J Stomatol, 2017, 44(6): 664-668.
[9] Chen Guanhui, Hou Jinsong. Hypoxia and autophagy and their correlation with tumorigenesis and development [J]. Inter J Stomatol, 2016, 43(5): 584-588.
[10] Ren Jingyi1, Liu Xinchan1, Ding Ye1, Yu Hongqiang1, Zhou Yanmin1, Yu Weixian2. Interaction of autophagy and inflammation in periodontitis [J]. Inter J Stomatol, 2016, 43(4): 462-467.
[11] Yan Ziqi1, He Wulin2, Zou Shujuan1.. Research progress on effect of low-level laser therapy during orthodontic tooth movement [J]. Inter J Stomatol, 2014, 41(2): 169-171.
[12] Jin Shufang, Jiang Canhua.. Autophagy-related gene product 8 and its relation to malignant tumors of head and neck [J]. Inter J Stomatol, 2014, 41(2): 195-198.
[13] Xing Xue, Lu Shujing, Jin Xin, Chen Qianming, Zeng Xin..
Cell autophagy and its correlation with oral squamous cell carcinoma
[J]. Inter J Stomatol, 2013, 40(2): 253-256.
[14] Chang Zhen1, Li Ronglin1, Li Chunyang2.. Research progress on the role of autophagy in the malignant transformation of oral lichen planus [J]. Inter J Stomatol, 2012, 39(3): 416-420.
[15] Bao Xingfu, Hu Min.. Research progress on mechanisms and regulations of bone resorption in orthodontic tooth movement [J]. Inter J Stomatol, 2012, 39(2): 187-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .