Int J Stomatol ›› 2021, Vol. 48 ›› Issue (5): 563-569.doi: 10.7518/gjkq.2021101

• Reviews • Previous Articles     Next Articles

Research progress on multiphasic scaffold in periodontal regeneration

Gong Jinglei(),Huang Yanmei,Wang Jun()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-03-06 Revised:2021-06-06 Online:2021-09-01 Published:2021-09-10
  • Contact: Jun Wang;
  • Supported by:
    National Natural Science Foundation of China(81771114);National Natural Science Foundation of China(81970967)


Periodontal tissue damage caused by periodontitis can lead to the mobility and loss of tooth, thereby endangering oral health and even general health. The temporal and spatial relationship of periodontal tissues and their functional reconstruction have become a research frontier, which sets higher demands on traditional therapeutic techniques. As a new type of tissue-engineered materials, multiphasic scaffolds show unique advantages in rebuilding the physiological characteristics and functional relationships of soft and hard tissues, which are keys to periodontal regeneration and functional integration. This article reviews the research progress on multiphase scaffolds in the field of periodontal structure and functional regeneration. It focuses on the frontier of the combination of these scaffolds with growth factor delivery, stem cell technology, existing periodontal treatment strategies, and emerging material technologies. This study serves as a guide for the future integration of tissue engineering and stomatology.

Key words: periodontal regeneration, tissue engineering, multiphasic scaffolds, growth factor, mesenchymal stem cell

CLC Number: 

  • R781.4

[1] Han J, Menicanin D, Gronthos S, et al. Stem cells, tissue engineering and periodontal regeneration[J]. Aust Dent J, 2014, 59:117-130.
doi: 10.1111/adj.2014.59.issue-s1
[2] Park CH. Biomaterial-based approaches for regene-ration of periodontal ligament and cementum using 3D platforms[J]. Int J Mol Sci, 2019, 20(18):4364.
doi: 10.3390/ijms20184364
[3] Ji S, Choi YS, Choi Y. Bacterial invasion and persistence: critical events in the pathogenesis of perio-dontitis[J]. J Periodontal Res, 2015, 50(5):570-585.
doi: 10.1111/jre.12248 pmid: 25487426
[4] Onizuka S, Iwata T. Application of periodontal ligament-derived multipotent mesenchymal stromal cell sheets for periodontal regeneration[J]. Int J Mol Sci, 2019, 20(11):E2796.
[5] 和璐. 牙周炎和代谢综合征[J]. 北京大学学报(医学版), 2011, 43(1):13-17.
He L. Periodontitis and metabolic syndrome[J]. J Pe-king Univ (Heal Sci), 2011, 43(1):13-17.
[6] Sanz M, Ceriello A, Buysschaert M, et al. Scientific evidence on the links between periodontal diseases and diabetes: consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology[J]. J Clin Perio-dontol, 2018, 45(2):138-149.
[7] 王勤涛, 吴织芬. 牙周病与全身系统性疾病间的相互关系[J]. 国外医学口腔医学分册, 2003, 30(2):135-137.
Wang QT, Wu ZF. The relationship between perio-dontal disease and systemic diseases[J]. Foreign Med Sci (Stomatol), 2003, 30(2):135-137.
[8] Kamer AR, Craig RG, Dasanayake AP, et al. Inflammation and Alzheimer’s disease: possible role of pe-riodontal diseases[J]. Alzheimers Dement, 2008, 4(4):242-250.
doi: 10.1016/j.jalz.2007.08.004
[9] Shin YJ, Choung HW, Lee JH, et al. Association of periodontitis with oral cancer: a case-control study[J]. J Dent Res, 2019, 98(5):526-533.
doi: 10.1177/0022034519827565 pmid: 30779879
[10] Li XJ, Kolltveit KM, Tronstad L, et al. Systemic di-seases caused by oral infection[J]. Clin Microbiol Rev, 2000, 13(4):547-558.
doi: 10.1128/CMR.13.4.547 pmid: 11023956
[11] Iheozor-Ejiofor Z, Middleton P, Esposito M, et al. Treating periodontal disease for preventing adverse birth outcomes in pregnant women[J]. Cochrane Database Syst Rev, 2017, 6(6): CD005297.
[12] Jeon JE, Vaquette C, Klein TJ, et al. Perspectives in multiphasic osteochondral tissue engineering[J]. Anat Rec (Hoboken), 2014, 297(1):26-35.
doi: 10.1002/ar.v297.1
[13] Yousefi AM, Hoque ME, Prasad RG, et al. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review[J]. J Biomed Mater Res A, 2015, 103(7):2460-2481.
doi: 10.1002/jbm.v103.7
[14] Park CH, Rios HF, Jin Q, et al. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces[J]. Biomaterials, 2010, 31(23):5945-5952.
doi: 10.1016/j.biomaterials.2010.04.027
[15] Zhu WT, Zhang Q, Zhang Y, et al. PDL regeneration via cell homing in delayed replantation of avulsed teeth[J]. J Transl Med, 2015, 13:357.
doi: 10.1186/s12967-015-0719-2
[16] de Jong T, Bakker AD, Everts V, et al. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration[J]. J Perio-dontal Res, 2017, 52(6):965-974.
[17] Park CH, Kim KH, Lee YM, et al. 3D printed, microgroove pattern-driven generation of oriented ligamentous architectures[J]. Int J Mol Sci, 2017, 18(9):1927.
doi: 10.3390/ijms18091927
[18] Sowmya S, Mony U, Jayachandran P, et al. Tri-la-yered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone[J]. Adv Healthc Mater, 2017, 6(7). doi: 10.1002/adhm.201601251.
doi: 10.1002/adhm.201601251
[19] Huang RY, Tai WC, Ho MH, et al. Combination of a biomolecule-aided biphasic cryogel scaffold with a barrier membrane adhering PDGF-encapsulated na-nofibers to promote periodontal regeneration[J]. J Periodontal Res, 2020, 55(4):529-538.
doi: 10.1111/jre.v55.4
[20] Lee CH, Hajibandeh J, Suzuki T, et al. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex[J]. Tissue Eng Part A, 2014, 20(7/8):1342-1351.
doi: 10.1089/ten.tea.2013.0386
[21] Ding T, Li J, Zhang X, et al. Super-assembled core/shell fibrous frameworks with dual growth factors for in situ cementum-ligament-bone complex rege-neration[J]. Biomater Sci, 2020, 8(9):2459-2471.
doi: 10.1039/D0BM00102C
[22] Wu C, Zhang Y, Zhou Y, et al. A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: physiochemistry and in vivo osteoge-nesis[J]. Acta Biomater, 2011, 7(5):2229-2236.
doi: 10.1016/j.actbio.2010.12.019
[23] Zhang YF, Miron RJ, Li SE, et al. Novel MesoPorous BioGlass/silk scaffold containing adPDGF-B and adBMP7 for the repair of periodontal defects in beagle dogs[J]. J Clin Periodontol, 2015, 42(3):262-271.
doi: 10.1111/jcpe.12364
[24] Xie Q, Jia LN, Xu HY, et al. Fabrication of core-shell PEI/pBMP2-PLGA electrospun scaffold for gene delivery to periodontal ligament stem cells[J]. Stem Cells Int, 2016, 2016:5385137.
[25] Liu J, Ruan J, Weir MD, et al. Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells[J]. Cells, 2019, 8(6):537.
doi: 10.3390/cells8060537
[26] Wu M, Wang J, Zhang Y, et al. Mineralization induction of gingival fibroblasts and construction of a sandwich tissue-engineered complex for repairing periodontal defects[J]. Med Sci Monit, 2018, 24:1112-1123.
doi: 10.12659/MSM.908791
[27] Requicha JF, Viegas CA, Muñoz F, et al. A tissue engineering approach for periodontal regeneration ba-sed on a biodegradable double-layer scaffold and adi-pose-derived stem cells[J]. Tissue Eng Part A, 2014, 20(17/18):2483-2492.
doi: 10.1089/ten.tea.2013.0360
[28] Chen G, Chen J, Yang B, et al. Combination of alig-ned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration[J]. Biomaterials, 2015, 52:56-70.
doi: 10.1016/j.biomaterials.2015.02.011
[29] Kawecki F, Clafshenkel WP, Fortin M, et al. Biomimetic tissue-engineered bone substitutes for maxillofacial and craniofacial repair: the potential of cell sheet technologies[J]. Adv Healthc Mater, 2018, 7(6):e1700919.
[30] Owaki T, Shimizu T, Yamato M, et al. Cell sheet engineering for regenerative medicine: current challenges and strategies[J]. Biotechnol J, 2014, 9(7):904-914.
doi: 10.1002/biot.201300432
[31] Iwata T, Yamato M, Tsuchioka H, et al. Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model[J]. Biomate-rials, 2009, 30(14):2716-2723.
[32] Vaquette C, Fan W, Xiao Y, et al. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex[J]. Biomaterials, 2012, 33(22):5560-5573.
doi: 10.1016/j.biomaterials.2012.04.038 pmid: 22575832
[33] Costa PF, Vaquette C, Zhang QY, et al. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure[J]. J Clin Periodontol, 2014, 41(3):283-294.
doi: 10.1111/jcpe.12214
[34] Farias BC, Souza PR, Ferreira B, et al. Occurrence of periodontal pathogens among patients with chro-nic periodontitis[J]. Publ Braz Soc Microbiol, 2012, 43(3):909-916.
[35] Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug deli-very in cancer[J]. Trends Pharmacol Sci, 2009, 30(11):592-599.
doi: 10.1016/
[36] Zhang J, Misra RD. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response[J]. Acta Biomater, 2007, 3(6):838-850.
pmid: 17638599
[37] Ranjbar-Mohammadi M, Zamani M, Prabhakaran MP, et al. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58:521-531.
doi: 10.1016/j.msec.2015.08.066
[38] Chen J, Zhou B, Li Q, et al. PLLA-PEG-TCH-labeled bioactive molecule nanofibers for tissue engineering[J]. Int J Nanomedicine, 2011, 6:2533-2542.
[39] Guo Z, Bo D, He P, et al. Sequential controlled-released dual-drug loaded scaffold for guided bone regeneration in a rat fenestration defect model[J]. J Mater Chem B, 2017, 5(37):7701-7710.
doi: 10.1039/C7TB00909G
[40] Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration-a materials perspective[J]. Dent Mater, 2012, 28(7):703-721.
doi: 10.1016/ pmid: 22592164
[41] Carlo Reis EC, Borges AP, Araújo MV, et al. Perio-dontal regeneration using a bilayered PLGA/calcium phosphate construct[J]. Biomaterials, 2011, 32(35):9244-9253.
doi: 10.1016/j.biomaterials.2011.08.040
[42] Ma Y, Xie L, Yang B, et al. Three-dimensional prin-ting biotechnology for the regeneration of the tooth and tooth-supporting tissues[J]. Biotechnol Bioeng, 2019, 116(2):452-468.
doi: 10.1002/bit.v116.2
[43] Park CH, Rios HF, Taut AD, et al. Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces[J]. Tissue Eng Part C Methods, 2014, 20(7):533-542.
doi: 10.1089/ten.tec.2013.0619
[44] Pilipchuk SP, Fretwurst T, Yu N, et al. Micropatterned scaffolds with immobilized growth factor genes regenerate bone and periodontal ligament-like tissues[J]. Adv Healthc Mater, 2018, 7(22):e1800750.
[45] Pilipchuk SP, Monje A, Jiao Y, et al. Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo[J]. Adv Healthc Mater, 2016, 5(6):676-687.
doi: 10.1002/adhm.201500758
[46] Kim EC, Park J, Kwon IK, et al. Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells[J]. J Periodontal Implant Sci, 2017, 47(5):273-291.
doi: 10.5051/jpis.2017.47.5.273
[47] Dodel M, Hemmati Nejad N, Bahrami SH, et al. Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration[J]. Biologicals, 2017, 46:99-107.
doi: 10.1016/j.biologicals.2017.01.007
[48] Sprio S, Campodoni E, Sandri M, et al. A graded multifunctional hybrid scaffold with superparamagnetic ability for periodontal regeneration[J]. Int J Mol Sci, 2018, 19(11):3604.
doi: 10.3390/ijms19113604
[49] Jang AT, Chen L, Shimotake AR, et al. A force on the crown and tug of war in the periodontal complex[J]. J Dent Res, 2018, 97(3):241-250.
doi: 10.1177/0022034517744556 pmid: 29364757
[50] Kim YT, Park JC, Choi SH, et al. The dynamic hea-ling profile of human periodontal ligament stem cells: histological and immunohistochemical analysis u-sing an ectopic transplantation model[J]. J Periodontal Res, 2012, 47(4):514-524.
doi: 10.1111/j.1600-0765.2011.01463.x pmid: 22308979
[51] Spalazzi JP, Dagher E, Doty SB, et al. In vivo evalua-tion of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration[J]. J Biomed Mater Res A, 2008, 86(1):1-12.
doi: 10.1002/jbm.a.32073 pmid: 18442111
[1] Chen Runzhi,Zhang Wentao,Chen Feng,Yang Fan. Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering [J]. Int J Stomatol, 2023, 50(6): 739-746.
[2] Wu Jiaxin,Cheng Xingqun,Wu Hongkun.. Clinical application and research progress on hyaluronic acid in the repair of papillary height loss [J]. Int J Stomatol, 2023, 50(3): 347-352.
[3] Yang Mengyao,Gao Xianling,Deng Shuli. Application of electrospun nanofibers in periodontal regeneration [J]. Int J Stomatol, 2023, 50(1): 10-18.
[4] Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42.
[5] Zhou Can,Zeng Qian,Wei Xi.. Prospects for the application of concentrated growth factor in vital pulp therapy [J]. Int J Stomatol, 2022, 49(6): 684-689.
[6] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[7] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
[8] Shi Peilei,Yu Chenhao,Xie Xudong,Wu Yafei,Wang Jun. Research progress on the application of dental-derived mesenchymal stem cells in periodontal defect repair [J]. Int J Stomatol, 2021, 48(6): 690-695.
[9] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[10] Cao Chunling,Han Bing,Wang Xiaoyan. Research progress on hydrogels for pulp regeneration [J]. Int J Stomatol, 2021, 48(2): 192-197.
[11] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
[12] Chen Ye, Zhou Feng, Wu Qionghui, Che Huiling, Li Jiaxuan, Shen Jiaqi, Luo En. Effect of adiponectin on bone marrow mesenchymal stem cells and its regulatory mechanisms [J]. Int J Stomatol, 2021, 48(1): 58-63.
[13] Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70.
[14] Wang Shiqi,Chang Yaqin,Chen Bin,Tan Baochun,Ni Yanhong. Comparison of clinical outcomes between using bone graft alone and the combination of bone graft with membrane for periodontal regeneration therapy: a systematic review and Meta-analysis [J]. Int J Stomatol, 2020, 47(6): 644-651.
[15] Lü Hui,Wang Hua,Sun Wen. T helper cell 17 and periodontitis related osteoimmunology [J]. Int J Stomatol, 2020, 47(6): 661-668.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .