Int J Stomatol ›› 2023, Vol. 50 ›› Issue (6): 739-746.doi: 10.7518/gjkq.2023081
• Reviews • Previous Articles
Chen Runzhi1(),Zhang Wentao2,Chen Feng3,Yang Fan2()
CLC Number:
1 | Ma DK, Wang YS, Dai WJ. Silk fibroin-based biomaterials for musculoskeletal tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2018, 89: 456-469. |
2 | Sarrigiannidis SO, Rey JM, Dobre O, et al. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabi-lities[J]. Mater Today Bio, 2021, 10: 100098. |
3 | Zhang L, Zhang W, Hu YJ, et al. Systematic review of silk scaffolds in musculoskeletal tissue enginee-ring applications in the recent decade[J]. ACS Biomater Sci Eng, 2021, 7(3): 817-840. |
4 | Gao F, Xu ZY, Liang QF, et al. Osteochondral rege-neration with 3D-printed biodegradable highstreng-th supramolecular polymer reinforced-gelatin hydrogel scaffolds[J]. Adv Sci, 2019, 6(15): 1900867. |
5 | Koh LD, Cheng Y, Teng CP, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Prog Polym Sci, 2015, 46: 86-110. |
6 | Melke J, Midha S, Ghosh S, et al. Silk fibroin as biomaterial for bone tissue engineering[J]. Acta Biomater, 2016, 31: 1-16. |
7 | Farokhi M, Aleemardani M, Solouk A, et al. Crosslinking strategies for silk fibroin hydrogels: promi-sing biomedical materials[J]. Biomed Mater, 2021, 16(2): 022004. |
8 | Xu F, Dawson C, Lamb M, et al. Hydrogels for tissue engineering: addressing key design needs toward clinical translation[J]. Front Bioeng Biotechnol, 2022, 10: 849831. |
9 | Ding ZZ, Cheng WN, Mia MS, et al. Silk biomate-rials for bone tissue engineering[J]. Macromol Bio-sci, 2021, 21(8): e2100153. |
10 | Fedorovich NE, Alblas J, de Wijn JR, et al. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing[J]. Tissue Eng, 2007, 13(8): 1905-1925. |
11 | Ribeiro VP, Pina S, Oliveira JM, et al. Silk fibroin-based hydrogels and scaffolds for osteochondral repair and regeneration[J]. Adv Exp Med Biol, 2018, 1058: 305-325. |
12 | Zhang QA, Yan SQ, Li MZ. Silk fibroin based porous materials[J]. Materials, 2009, 2(4): 2276-2295. |
13 | 贾明鲲, 闫景龙. 生物可降解丝素蛋白在骨科中的应用与进展[J]. 北京生物医学工程, 2021, 40(6): 629-634. |
Jia MK, Yan JL. Application and progress of biodegradable silk fibroin in orthopaedics[J]. Beijing Biomed Eng, 2021, 40(6): 629-634. | |
14 | Etienne O, Schneider A, Kluge JA, et al. Soft tissue augmentation using silk gels: an in vitro and in vivo study[J]. J Periodontol, 2009, 80(11): 1852-1858. |
15 | Hamilton DC, Shih HH, Schubert RA, et al. A silk-based encapsulation platform for pancreatic islet transplantation improves islet function in vivo [J]. J Tissue Eng Regen Med, 2017, 11(3): 887-895. |
16 | Sun WZ, Gregory DA, Tomeh MA, et al. Silk fibroin as a functional biomaterial for tissue engineering[J]. Int J Mol Sci, 2021, 22(3): 1499. |
17 | Matsumoto A, Chen JS, Collette AL, et al. Mechanisms of silk fibroin sol-gel transitions[J]. J Phys Chem B, 2006, 110(43): 21630-21638. |
18 | Zainuddin, Le TT, Park Y, et al. The behavior of aged regenerated Bombyx Mori silk fibroin solutions studied by (1)H NMR and rheology[J]. Biomaterials, 2008, 29(32): 4268-4274. |
19 | Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2020, 110: 110698. |
20 | Cheng Y, Cheng G, Xie CY, et al. Biomimetic silk fibroin hydrogels strengthened by silica nanoparticles distributed nanofibers facilitate bone repair[J]. Adv Healthc Mater, 2021, 10(9): e2001646. |
21 | Choi IH, Chung CY, Cho TJ, et al. Angiogenesis and mineralization during distraction osteogenesis[J]. J Korean Med Sci, 2002, 17(4): 435-447. |
22 | Yan YF, Cheng BC, Chen KZ, et al. Enhanced osteogenesis of bone marrow-derived mesenchymal stem cells by a functionalized silk fibroin hydrogel for bone defect repair[J]. Adv Healthc Mater, 2019, 8(3): e1801043. |
23 | Lu Q, Zhu HS, Zhang CC, et al. Silk self-assembly mechanisms and control from thermodynamics to kinetics[J]. Biomacromolecules, 2012, 13(3): 826-832. |
24 | Pham DT, Saelim N, Tiyaboonchai W. Crosslinked fibroin nanoparticles using EDC or PEI for drug delivery: physicochemical properties, crystallinity and structure[J]. J Mater Sci, 2018, 53(20): 14087-14103. |
25 | Wang Q, Wang CY, Zhang MC, et al. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers[J]. Nano Lett, 2016, 16(10): 6695-6700. |
26 | Wang Y, Kim BJ, Peng B, et al. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces[J]. Proc Natl Acad Sci U S A, 2019, 116(43): 21361-21368. |
27 | Bessonov I, Moysenovich A, Arkhipova A, et al. The mechanical properties, secondary structure, and osteogenic activity of photopolymerized fibroin[J]. Polymers, 2020, 12(3): 646. |
28 | Pham DT, Tiyaboonchai W. Fibroin nanoparticles: a promising drug delivery system[J]. Drug Deliv, 2020, 27(1): 431-448. |
29 | Wu GH, Song P, Zhang DY, et al. Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles[J]. Int J Biol Macromol, 2017, 104(Pt A): 533-538. |
30 | Gong JP, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Adv Mater, 2003, 15(14): 1155-1158. |
31 | Xiao WQ, Qu XH, Li JL, et al. Synthesis and cha-racterization of cell-laden double-network hydrogels based on silk fibroin and methacrylated hya-luronic acid[J]. Eur Polym J, 2019, 118: 382-392. |
32 | Zhao Y, Guan J, Wu SJ. Highly stretchable and tough physical silk fibroin-based double network hydrogels[J]. Macromol Rapid Commun, 2019, 40(23): e1900389. |
33 | Park S, Edwards S, Hou SJ, et al. A multi-interpenetrating network (IPN) hydrogel with gelatin and silk fibroin[J]. Biomater Sci, 2019, 7(4): 1276-1280. |
34 | Haraguchi K, Takehisa T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swel-ling/de-swelling properties[J]. Adv Mater, 2002, 14(16): 1120. |
35 | Partlow BP, Hanna CW, Rnjak-Kovacina J, et al. Highly tunable elastomeric silk biomaterials[J]. Adv Funct Mater, 2014, 24(29): 4615-4624. |
36 | Dong T, Mi RX, Wu M, et al. The regenerated silk fibroin hydrogel with designed architecture bioprin-ted by its microhydrogel[J]. J Mater Chem B, 2019, 7(27): 4328-4337. |
37 | He SR, Shi D, Han ZG, et al. Heparinized silk fibroin hydrogels loading FGF1 promote the wound hea-ling in rats with full-thickness skin excision[J]. Biomed Eng Online, 2019, 18(1): 97. |
38 | Fini M, Motta A, Torricelli P, et al. The healing of confined critical size cancellous defects in the pre-sence of silk fibroin hydrogel[J]. Biomaterials, 2005, 26(17): 3527-3536. |
39 | Kasoju N, Hawkins N, Pop-Georgievski O, et al. Silk fibroin gelation via non-solvent induced phase separation[J]. Biomater Sci, 2016, 4(3): 460-473. |
40 | Wu XL, Hou J, Li MZ, et al. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin[J]. Acta Biomater, 2012, 8(6): 2185-2192. |
41 | Sun W, Incitti T, Migliaresi C, et al. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide[J]. J Tissue Eng Regen Med, 2017, 11(5): 1532-1541. |
42 | Zuluaga-Vélez A, Cómbita-Merchán DF, Buitrago-Sierra R, et al. Silk fibroin hydrogels from the Colombian silkworm Bombyx Mori L: evaluation of physicochemical properties[J]. PLoS One, 2019, 14(3): e0213303. |
43 | Karakutuk I, Ak F, Okay O. Diepoxide-triggered conformational transition of silk fibroin: formation of hydrogels[J]. Biomacromolecules, 2012, 13(4): 1122-1128. |
44 | Zheng HY, Zuo BQ. Functional silk fibroin hydrogels: preparation, properties and applications[J]. J Mater Chem B, 2021, 9(5): 1238-1258. |
45 | Lu QF, Han YY, Ma Y, et al. Design of silk fibroin-based supramolecular hydrogels through host-guest interactions: influence of the crosslinking type[J]. Colloids Surf A, 2022, 652: 129898. |
46 | Zhang WJ, Wang XL, Wang SY, et al. The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor[J]. Biomaterials, 2011, 32(35): 9415-9424. |
47 | Diab T, Pritchard EM, Uhrig BA, et al. A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects[J]. J Mech Behav Biomed Mater, 2012, 11: 123-131. |
48 | Wang B, Yuan S, Xin W, et al. Synergic adhesive chemistry-based fabrication of BMP-2 immobilized silk fibroin hydrogel functionalized with hybrid nanomaterial to augment osteogenic differentiation of rBMSCs for bone defect repair[J]. Int J Biol Macromol, 2021, 192: 407-416. |
49 | Sen CK, Khanna S, Venojarvi M, et al. Copper-induced vascular endothelial growth factor expression and wound healing[J]. Am J Physiol Heart Circ Physiol, 2002, 282(5): H1821-H1827. |
50 | Fan W, Crawford R, Xiao Y. Enhancing in vivo vascularized bone formation by cobalt chloride-treated bone marrow stromal cells in a tissue engineered pe-riosteum model[J]. Biomaterials, 2010, 31(13): 3580-3589. |
51 | Zhou HJ, Wei J, Wu XH, et al. The bio-functional role of calcium in mesoporous silica xerogels on the responses of osteoblasts in vitro [J]. J Mater Sci Mater Med, 2010, 21(7): 2175-2185. |
52 | Popp JR, Love BJ, Goldstein AS. Effect of soluble zinc on differentiation of osteoprogenitor cells[J]. J Biomed Mater Res A, 2007, 81(3): 766-769. |
53 | Wu JJ, Zheng K, Huang XT, et al. Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in situ bone formation in rat calvarial bone defects[J]. Acta Biomater, 2019, 91: 60-71. |
54 | Kyung Kim D, Lee S, Kim M, et al. Exosome-coa-ted silk fibroin 3D-scaffold for inducing osteogenic differentiation of bone marrow derived mesenchymal stem cells[J]. Chem Eng J, 2021, 406: 127080. |
55 | You DQ, Chen GC, Liu C, et al. 4D printing of multi-responsive membrane for accelerated in vivo bone healing via remote regulation of stem cell fate[J]. Adv Funct Materials, 2021, 31(40): 2103920. |
56 | Ding ZZ, Han HY, Fan ZH, et al. Nanoscale silk-hydroxyapatite hydrogels for injectable bone biomaterials[J]. ACS Appl Mater Interfaces, 2017, 9(20): 16913-16921. |
57 | Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27): 5474-5491. |
58 | Karamat-Ullah N, Demidov Y, Schramm M, et al. 3D printing of antibacterial, biocompatible, and biomimetic hybrid aerogel-based scaffolds with hierarchical porosities via integrating antibacterial peptide-modified silk fibroin with silica nanostructure[J]. ACS Biomater Sci Eng, 2021, 7(9): 4545-4556. |
59 | Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials[J]. Biomaterials, 2003, 24(3): 401-416. |
60 | Horan RL, Antle K, Collette AL, et al. In vitro de-gradation of silk fibroin[J]. Biomaterials, 2005, 26(17): 3385-3393. |
61 | Pritchard EM, Valentin T, Boison D, et al. Incorporation of proteinase inhibitors into silk-based delivery devices for enhanced control of degradation and drug release[J]. Biomaterials, 2011, 32(3): 909-918. |
62 | Sengupta S, Park SH, Seok GE, et al. Quantifying osteogenic cell degradation of silk biomaterials[J]. Biomacromolecules, 2010, 11(12): 3592-3599. |
63 | Wang YZ, Rudym DD, Walsh A, et al. In vivo degradation of three-dimensional silk fibroin scaffolds[J]. Biomaterials, 2008, 29(24/25): 3415-3428. |
64 | Wang BX, Xu HD, Li J, et al. Degradable allyl Antheraea pernyi silk fibroin thermoresponsive hydrogels to support cell adhesion and growth[J]. RSC Adv, 2021, 11(45): 28401-28409. |
65 | Chirila TV, Suzuki S, Papolla C. A comparative investigation of Bombyx Mori silk fibroin hydrogels generated by chemical and enzymatic cross-linking[J]. Biotechnol Appl Biochem, 2017, 64(6): 771-781. |
66 | Numata K, Yamazaki S, Katashima T, et al. Silk-pectin hydrogel with superior mechanical properties, biodegradability, and biocompatibility[J]. Ma-cromol Biosci, 2014, 14(6): 799-806. |
67 | Sahoo JK, Choi J, Hasturk O, et al. Silk degumming time controls horseradish peroxidase-catalyzed hydrogel properties[J]. Biomater Sci, 2020, 8(15): 4176-4185. |
68 | Meng L, Shao CY, Cui C, et al. Autonomous self-healing silk fibroin injectable hydrogels formed via surfactant-free hydrophobic association[J]. ACS Appl Mater Interfaces, 2020, 12(1): 1628-1639. |
69 | Jiang LB, Su DH, Ding SL, et al. Salt-assisted toughening of protein hydrogel with controlled de-gradation for bone regeneration[J]. Adv Funct Mater, 2019, 29(26): 1901314. |
[1] | Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70. |
[2] | Wang Huan,Liu Yang,Qi Mengchun,Li Jingyi,Liu Mengnan,Sun Hong. Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation [J]. Int J Stomatol, 2020, 47(4): 439-444. |
[3] | Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269. |
[4] | Liu Yuhao,Zhang Tao. Research progress on shape memory polymers in bone defect repair and regeneration [J]. Int J Stomatol, 2020, 47(2): 219-224. |
[5] | Zou Jundong,Liu Dingkun,Yang Nan,Wang Mi,Liu Zhihui. An overview of bioactive glasses/chitosan composites for biomedical applications [J]. Int J Stomatol, 2020, 47(1): 90-94. |
[6] | Jiang Xiaoge,Wu Jiaxin,Pei Xibo. Research progress on metal-organic frameworks and their complex in biomedical field [J]. Int J Stomatol, 2019, 46(5): 552-557. |
[7] | Yanli Liu,Wei Zhao,Biying Zhang,Xiaoli An. Research progress on maxillary protraction with skeletal anchorage in growing patients with Class Ⅲ malocclusion [J]. Inter J Stomatol, 2019, 46(1): 112-118. |
[8] | Mengqi Liu,Kuo Gai,Li Jiang. Research progress on oral implant materials with antimicrobial properties [J]. Inter J Stomatol, 2018, 45(5): 516-521. |
[9] | Fang Yi,Siren Wang,Yanhao Chu,Yanqin. Lu. Research progress on the repair of alveolar cleft with bone tissue engineering scaffolds [J]. Inter J Stomatol, 2018, 45(5): 603-610. |
[10] | Zhang Xin, Wang Chenglin, Yang Jing, Ye Ling. Epigenetic regulation in dental pulp stem cells [J]. Inter J Stomatol, 2018, 45(3): 261-266. |
[11] | Zhou Jie, Wang Ying, Zhang Lei, Wu Tingting, Zhou Yong, Zou Duohong. Characteristics of dental tissue-derived stem cells and their application in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 280-285. |
[12] | Liang Xinyu, Shi Jiabo, Chen Wenchuan, Zhu Zhimin. Research progress on synthetic nanosilicates in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 340-345. |
[13] | Zhang Yixin, Li Lei. Development of calcium phosphate scaffolds as drug delivery system in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 346-350. |
[14] | Luo Weidan, Li Mingyun, Zhou Xuedong, Cheng Lei. Application of nano-hydroxyapatite in the clinical treatment of oral diseases [J]. Inter J Stomatol, 2018, 45(2): 192-198. |
[15] | Zhang Jia, Liu Zhonghao. Research progress on strontium in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(1): 50-54. |