Int J Stomatol ›› 2023, Vol. 50 ›› Issue (6): 739-746.doi: 10.7518/gjkq.2023081

• Reviews • Previous Articles    

Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering

Chen Runzhi1(),Zhang Wentao2,Chen Feng3,Yang Fan2()   

  1. 1.School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
    2.Dept. of Stomatology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou 310014, China
    3.School of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
  • Received:2023-01-01 Revised:2023-06-06 Online:2023-11-01 Published:2023-10-24
  • Contact: Fan Yang E-mail:runzhi_chen@163.com;yangfan@hmc.edu.cn
  • Supported by:
    Medical Health Science and Technology Project of Zhejiang Provincial Health Commission(2021KY068)

Abstract:

The repair and reconstruction of large bone defects require a thorough understanding of the physicochemical and biological properties of bone tissue, as well as bionic strategies to prepare suitable bone tissue engineering scaffolds. Silk protein is a natural polymer material with unique biological properties. Hydrogels prepared with silk protein as their main component are also promising scaffold materials. Certain properties of the hydrogel need to be modified to meet the requirements of an ideal scaffold for bone tissue engineering. Therefore, this paper reviews the modification methods to silk fibroin hydrogel when applied to bone tissue engineering in terms of enhancing mechanical properties, increasing biological inductivity, and regulating biodegradability.

Key words: silk fibroin, hydrogels, bone tissue engineering, modification

CLC Number: 

  • R 783.1

TrendMD: 
1 Ma DK, Wang YS, Dai WJ. Silk fibroin-based biomaterials for musculoskeletal tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2018, 89: 456-469.
2 Sarrigiannidis SO, Rey JM, Dobre O, et al. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabi-lities[J]. Mater Today Bio, 2021, 10: 100098.
3 Zhang L, Zhang W, Hu YJ, et al. Systematic review of silk scaffolds in musculoskeletal tissue enginee-ring applications in the recent decade[J]. ACS Biomater Sci Eng, 2021, 7(3): 817-840.
4 Gao F, Xu ZY, Liang QF, et al. Osteochondral rege-neration with 3D-printed biodegradable highstreng-th supramolecular polymer reinforced-gelatin hydrogel scaffolds[J]. Adv Sci, 2019, 6(15): 1900867.
5 Koh LD, Cheng Y, Teng CP, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Prog Polym Sci, 2015, 46: 86-110.
6 Melke J, Midha S, Ghosh S, et al. Silk fibroin as biomaterial for bone tissue engineering[J]. Acta Biomater, 2016, 31: 1-16.
7 Farokhi M, Aleemardani M, Solouk A, et al. Crosslinking strategies for silk fibroin hydrogels: promi-sing biomedical materials[J]. Biomed Mater, 2021, 16(2): 022004.
8 Xu F, Dawson C, Lamb M, et al. Hydrogels for tissue engineering: addressing key design needs toward clinical translation[J]. Front Bioeng Biotechnol, 2022, 10: 849831.
9 Ding ZZ, Cheng WN, Mia MS, et al. Silk biomate-rials for bone tissue engineering[J]. Macromol Bio-sci, 2021, 21(8): e2100153.
10 Fedorovich NE, Alblas J, de Wijn JR, et al. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing[J]. Tissue Eng, 2007, 13(8): 1905-1925.
11 Ribeiro VP, Pina S, Oliveira JM, et al. Silk fibroin-based hydrogels and scaffolds for osteochondral repair and regeneration[J]. Adv Exp Med Biol, 2018, 1058: 305-325.
12 Zhang QA, Yan SQ, Li MZ. Silk fibroin based porous materials[J]. Materials, 2009, 2(4): 2276-2295.
13 贾明鲲, 闫景龙. 生物可降解丝素蛋白在骨科中的应用与进展[J]. 北京生物医学工程, 2021, 40(6): 629-634.
Jia MK, Yan JL. Application and progress of biodegradable silk fibroin in orthopaedics[J]. Beijing Biomed Eng, 2021, 40(6): 629-634.
14 Etienne O, Schneider A, Kluge JA, et al. Soft tissue augmentation using silk gels: an in vitro and in vivo study[J]. J Periodontol, 2009, 80(11): 1852-1858.
15 Hamilton DC, Shih HH, Schubert RA, et al. A silk-based encapsulation platform for pancreatic islet transplantation improves islet function in vivo [J]. J Tissue Eng Regen Med, 2017, 11(3): 887-895.
16 Sun WZ, Gregory DA, Tomeh MA, et al. Silk fibroin as a functional biomaterial for tissue engineering[J]. Int J Mol Sci, 2021, 22(3): 1499.
17 Matsumoto A, Chen JS, Collette AL, et al. Mechanisms of silk fibroin sol-gel transitions[J]. J Phys Chem B, 2006, 110(43): 21630-21638.
18 Zainuddin, Le TT, Park Y, et al. The behavior of aged regenerated Bombyx Mori silk fibroin solutions studied by (1)H NMR and rheology[J]. Biomaterials, 2008, 29(32): 4268-4274.
19 Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2020, 110: 110698.
20 Cheng Y, Cheng G, Xie CY, et al. Biomimetic silk fibroin hydrogels strengthened by silica nanoparticles distributed nanofibers facilitate bone repair[J]. Adv Healthc Mater, 2021, 10(9): e2001646.
21 Choi IH, Chung CY, Cho TJ, et al. Angiogenesis and mineralization during distraction osteogenesis[J]. J Korean Med Sci, 2002, 17(4): 435-447.
22 Yan YF, Cheng BC, Chen KZ, et al. Enhanced osteogenesis of bone marrow-derived mesenchymal stem cells by a functionalized silk fibroin hydrogel for bone defect repair[J]. Adv Healthc Mater, 2019, 8(3): e1801043.
23 Lu Q, Zhu HS, Zhang CC, et al. Silk self-assembly mechanisms and control from thermodynamics to kinetics[J]. Biomacromolecules, 2012, 13(3): 826-832.
24 Pham DT, Saelim N, Tiyaboonchai W. Crosslinked fibroin nanoparticles using EDC or PEI for drug delivery: physicochemical properties, crystallinity and structure[J]. J Mater Sci, 2018, 53(20): 14087-14103.
25 Wang Q, Wang CY, Zhang MC, et al. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers[J]. Nano Lett, 2016, 16(10): 6695-6700.
26 Wang Y, Kim BJ, Peng B, et al. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces[J]. Proc Natl Acad Sci U S A, 2019, 116(43): 21361-21368.
27 Bessonov I, Moysenovich A, Arkhipova A, et al. The mechanical properties, secondary structure, and osteogenic activity of photopolymerized fibroin[J]. Polymers, 2020, 12(3): 646.
28 Pham DT, Tiyaboonchai W. Fibroin nanoparticles: a promising drug delivery system[J]. Drug Deliv, 2020, 27(1): 431-448.
29 Wu GH, Song P, Zhang DY, et al. Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles[J]. Int J Biol Macromol, 2017, 104(Pt A): 533-538.
30 Gong JP, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Adv Mater, 2003, 15(14): 1155-1158.
31 Xiao WQ, Qu XH, Li JL, et al. Synthesis and cha-racterization of cell-laden double-network hydrogels based on silk fibroin and methacrylated hya-luronic acid[J]. Eur Polym J, 2019, 118: 382-392.
32 Zhao Y, Guan J, Wu SJ. Highly stretchable and tough physical silk fibroin-based double network hydrogels[J]. Macromol Rapid Commun, 2019, 40(23): e1900389.
33 Park S, Edwards S, Hou SJ, et al. A multi-interpenetrating network (IPN) hydrogel with gelatin and silk fibroin[J]. Biomater Sci, 2019, 7(4): 1276-1280.
34 Haraguchi K, Takehisa T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swel-ling/de-swelling properties[J]. Adv Mater, 2002, 14(16): 1120.
35 Partlow BP, Hanna CW, Rnjak-Kovacina J, et al. Highly tunable elastomeric silk biomaterials[J]. Adv Funct Mater, 2014, 24(29): 4615-4624.
36 Dong T, Mi RX, Wu M, et al. The regenerated silk fibroin hydrogel with designed architecture bioprin-ted by its microhydrogel[J]. J Mater Chem B, 2019, 7(27): 4328-4337.
37 He SR, Shi D, Han ZG, et al. Heparinized silk fibroin hydrogels loading FGF1 promote the wound hea-ling in rats with full-thickness skin excision[J]. Biomed Eng Online, 2019, 18(1): 97.
38 Fini M, Motta A, Torricelli P, et al. The healing of confined critical size cancellous defects in the pre-sence of silk fibroin hydrogel[J]. Biomaterials, 2005, 26(17): 3527-3536.
39 Kasoju N, Hawkins N, Pop-Georgievski O, et al. Silk fibroin gelation via non-solvent induced phase separation[J]. Biomater Sci, 2016, 4(3): 460-473.
40 Wu XL, Hou J, Li MZ, et al. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin[J]. Acta Biomater, 2012, 8(6): 2185-2192.
41 Sun W, Incitti T, Migliaresi C, et al. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide[J]. J Tissue Eng Regen Med, 2017, 11(5): 1532-1541.
42 Zuluaga-Vélez A, Cómbita-Merchán DF, Buitrago-Sierra R, et al. Silk fibroin hydrogels from the Colombian silkworm Bombyx Mori L: evaluation of physicochemical properties[J]. PLoS One, 2019, 14(3): e0213303.
43 Karakutuk I, Ak F, Okay O. Diepoxide-triggered conformational transition of silk fibroin: formation of hydrogels[J]. Biomacromolecules, 2012, 13(4): 1122-1128.
44 Zheng HY, Zuo BQ. Functional silk fibroin hydrogels: preparation, properties and applications[J]. J Mater Chem B, 2021, 9(5): 1238-1258.
45 Lu QF, Han YY, Ma Y, et al. Design of silk fibroin-based supramolecular hydrogels through host-guest interactions: influence of the crosslinking type[J]. Colloids Surf A, 2022, 652: 129898.
46 Zhang WJ, Wang XL, Wang SY, et al. The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor[J]. Biomaterials, 2011, 32(35): 9415-9424.
47 Diab T, Pritchard EM, Uhrig BA, et al. A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects[J]. J Mech Behav Biomed Mater, 2012, 11: 123-131.
48 Wang B, Yuan S, Xin W, et al. Synergic adhesive chemistry-based fabrication of BMP-2 immobilized silk fibroin hydrogel functionalized with hybrid nanomaterial to augment osteogenic differentiation of rBMSCs for bone defect repair[J]. Int J Biol Macromol, 2021, 192: 407-416.
49 Sen CK, Khanna S, Venojarvi M, et al. Copper-induced vascular endothelial growth factor expression and wound healing[J]. Am J Physiol Heart Circ Physiol, 2002, 282(5): H1821-H1827.
50 Fan W, Crawford R, Xiao Y. Enhancing in vivo vascularized bone formation by cobalt chloride-treated bone marrow stromal cells in a tissue engineered pe-riosteum model[J]. Biomaterials, 2010, 31(13): 3580-3589.
51 Zhou HJ, Wei J, Wu XH, et al. The bio-functional role of calcium in mesoporous silica xerogels on the responses of osteoblasts in vitro [J]. J Mater Sci Mater Med, 2010, 21(7): 2175-2185.
52 Popp JR, Love BJ, Goldstein AS. Effect of soluble zinc on differentiation of osteoprogenitor cells[J]. J Biomed Mater Res A, 2007, 81(3): 766-769.
53 Wu JJ, Zheng K, Huang XT, et al. Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in situ bone formation in rat calvarial bone defects[J]. Acta Biomater, 2019, 91: 60-71.
54 Kyung Kim D, Lee S, Kim M, et al. Exosome-coa-ted silk fibroin 3D-scaffold for inducing osteogenic differentiation of bone marrow derived mesenchymal stem cells[J]. Chem Eng J, 2021, 406: 127080.
55 You DQ, Chen GC, Liu C, et al. 4D printing of multi-responsive membrane for accelerated in vivo bone healing via remote regulation of stem cell fate[J]. Adv Funct Materials, 2021, 31(40): 2103920.
56 Ding ZZ, Han HY, Fan ZH, et al. Nanoscale silk-hydroxyapatite hydrogels for injectable bone biomaterials[J]. ACS Appl Mater Interfaces, 2017, 9(20): 16913-16921.
57 Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27): 5474-5491.
58 Karamat-Ullah N, Demidov Y, Schramm M, et al. 3D printing of antibacterial, biocompatible, and biomimetic hybrid aerogel-based scaffolds with hierarchical porosities via integrating antibacterial peptide-modified silk fibroin with silica nanostructure[J]. ACS Biomater Sci Eng, 2021, 7(9): 4545-4556.
59 Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials[J]. Biomaterials, 2003, 24(3): 401-416.
60 Horan RL, Antle K, Collette AL, et al. In vitro de-gradation of silk fibroin[J]. Biomaterials, 2005, 26(17): 3385-3393.
61 Pritchard EM, Valentin T, Boison D, et al. Incorporation of proteinase inhibitors into silk-based delivery devices for enhanced control of degradation and drug release[J]. Biomaterials, 2011, 32(3): 909-918.
62 Sengupta S, Park SH, Seok GE, et al. Quantifying osteogenic cell degradation of silk biomaterials[J]. Biomacromolecules, 2010, 11(12): 3592-3599.
63 Wang YZ, Rudym DD, Walsh A, et al. In vivo degradation of three-dimensional silk fibroin scaffolds[J]. Biomaterials, 2008, 29(24/25): 3415-3428.
64 Wang BX, Xu HD, Li J, et al. Degradable allyl Antheraea pernyi silk fibroin thermoresponsive hydrogels to support cell adhesion and growth[J]. RSC Adv, 2021, 11(45): 28401-28409.
65 Chirila TV, Suzuki S, Papolla C. A comparative investigation of Bombyx Mori silk fibroin hydrogels generated by chemical and enzymatic cross-linking[J]. Biotechnol Appl Biochem, 2017, 64(6): 771-781.
66 Numata K, Yamazaki S, Katashima T, et al. Silk-pectin hydrogel with superior mechanical properties, biodegradability, and biocompatibility[J]. Ma-cromol Biosci, 2014, 14(6): 799-806.
67 Sahoo JK, Choi J, Hasturk O, et al. Silk degumming time controls horseradish peroxidase-catalyzed hydrogel properties[J]. Biomater Sci, 2020, 8(15): 4176-4185.
68 Meng L, Shao CY, Cui C, et al. Autonomous self-healing silk fibroin injectable hydrogels formed via surfactant-free hydrophobic association[J]. ACS Appl Mater Interfaces, 2020, 12(1): 1628-1639.
69 Jiang LB, Su DH, Ding SL, et al. Salt-assisted toughening of protein hydrogel with controlled de-gradation for bone regeneration[J]. Adv Funct Mater, 2019, 29(26): 1901314.
[1] Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70.
[2] Wang Huan,Liu Yang,Qi Mengchun,Li Jingyi,Liu Mengnan,Sun Hong. Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation [J]. Int J Stomatol, 2020, 47(4): 439-444.
[3] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
[4] Liu Yuhao,Zhang Tao. Research progress on shape memory polymers in bone defect repair and regeneration [J]. Int J Stomatol, 2020, 47(2): 219-224.
[5] Zou Jundong,Liu Dingkun,Yang Nan,Wang Mi,Liu Zhihui. An overview of bioactive glasses/chitosan composites for biomedical applications [J]. Int J Stomatol, 2020, 47(1): 90-94.
[6] Jiang Xiaoge,Wu Jiaxin,Pei Xibo. Research progress on metal-organic frameworks and their complex in biomedical field [J]. Int J Stomatol, 2019, 46(5): 552-557.
[7] Yanli Liu,Wei Zhao,Biying Zhang,Xiaoli An. Research progress on maxillary protraction with skeletal anchorage in growing patients with Class Ⅲ malocclusion [J]. Inter J Stomatol, 2019, 46(1): 112-118.
[8] Mengqi Liu,Kuo Gai,Li Jiang. Research progress on oral implant materials with antimicrobial properties [J]. Inter J Stomatol, 2018, 45(5): 516-521.
[9] Fang Yi,Siren Wang,Yanhao Chu,Yanqin. Lu. Research progress on the repair of alveolar cleft with bone tissue engineering scaffolds [J]. Inter J Stomatol, 2018, 45(5): 603-610.
[10] Zhang Xin, Wang Chenglin, Yang Jing, Ye Ling. Epigenetic regulation in dental pulp stem cells [J]. Inter J Stomatol, 2018, 45(3): 261-266.
[11] Zhou Jie, Wang Ying, Zhang Lei, Wu Tingting, Zhou Yong, Zou Duohong. Characteristics of dental tissue-derived stem cells and their application in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 280-285.
[12] Liang Xinyu, Shi Jiabo, Chen Wenchuan, Zhu Zhimin. Research progress on synthetic nanosilicates in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 340-345.
[13] Zhang Yixin, Li Lei. Development of calcium phosphate scaffolds as drug delivery system in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 346-350.
[14] Luo Weidan, Li Mingyun, Zhou Xuedong, Cheng Lei. Application of nano-hydroxyapatite in the clinical treatment of oral diseases [J]. Inter J Stomatol, 2018, 45(2): 192-198.
[15] Zhang Jia, Liu Zhonghao. Research progress on strontium in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(1): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .