Int J Stomatol ›› 2020, Vol. 47 ›› Issue (1): 90-94.doi: 10.7518/gjkq.2020002

• Reviews • Previous Articles     Next Articles

An overview of bioactive glasses/chitosan composites for biomedical applications

Zou Jundong,Liu Dingkun,Yang Nan,Wang Mi,Liu Zhihui()   

  1. Dept. of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
  • Received:2019-04-10 Revised:2019-09-16 Online:2020-01-01 Published:2020-01-01
  • Contact: Zhihui Liu E-mail:liu_zh@jlu.edu.cn
  • Supported by:
    This study was supported by Key Science and Technology Research and Development Project of Jilin Science and Technology Department(20180201056YY);Key Science and Technology Achievements Transformation Project of Jilin Provincial Science and Technology Department(20180201056YY);Changchun Science and Technology Bureau Changchun City Campus (School, Institute) Cooperation Special(17DY024)

Abstract:

Inorganic bioactive glass (BG) and natural chitosan (CS) are applied widely in biomedical fields due to their biological properties. Recent studies showed that compared with individual components, composites have optimised mechanical and biological properties, indicating their enormous potential for future development. This paper briefly introduces the physical and chemical properties of BG and CS and emphasises the recent studies on various applications of the BG/CS composites in bone tissue engineering, controlled release of drugs and molecules and implant dressing based on literature.

Key words: bioactive glass, chitosan, bone tissue engineering, controlled release, implant dressing

CLC Number: 

  • R318.08

TrendMD: 

Tab 1

Mechanical properties of cortical and trabe-cular bone compared with BG and CS"

材料类型 压缩强度/MPa 杨氏模量/MPa 孔隙率/%
骨密质 130~200 3 000~30 000 3~12
骨松质 0.1~20.0 20~26 940 50~90
BG(45S5 BG) 14~500 35 000~100 000 30~80
CS 0.005~89.480 35.50~88.98
[1] Sukaryo SG, Purnama A, Hermawan H . Structure and properties of biomaterials//Mahyudin F, Herma-wan H. Biomaterials and medical devices. Advanced structured materials[M].Switzerland: Springer, 2016(58):1-22.
[2] Ratner BD, Hoffman AS, Schoen FJ , et al.Biomate-rials science: an evolving,multidisciplinary endeavor[J]. Biomaterials Science, 2013:ⅩⅩⅤ-ⅩⅩⅩⅨ.
[3] Kargozar S, Baino F, Hamzehlou S , et al. Bioactive glasses entering the mainstream[J]. Drug Discov Today, 2018,23(10):1700-1704.
[4] Jones JR . Review of bioactive glass: from Hench to hybrids[J]. Acta Biomater, 2013,9(1):4457-4486.
[5] Miguez-Pacheco V, Hench LL, Boccaccini AR . Bio-active glasses beyond bone and teeth: emerging applications in contact with soft tissues[J]. Acta Bio-mater, 2015,13:1-15.
[6] Gerhardt LC, Boccaccini AR . Bioactive glass and glass-ceramic scaffolds for bone tissue engineering[J]. Materials (Basel), 2010,3(7):3867-3910.
[7] Soundrapandian C, Datta S, Kundu B , et al. Porous bioactive glass scaffolds for local drug delivery in osteomyelitis: development and in vitro characte-rization[J]. AAPS Pharm Sci Tech, 2010,11(4):1675-1683.
[8] Sahariah P, Másson M . Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship[J]. Biomacromolecules, 2017,18(11):3846-3868.
[9] Jayakumar R, Menon D, Manzoor K , et al. Biome-dical applications of chitin and chitosan based nano-materials—a short review[J]. Carbohydr Polym, 2010,82(2):227-232.
[10] Levengood SL, Zhang M . Chitosan-based scaffolds for bone tissue engineering[J]. J Mater Chem B, 2014,2(21):3161-3184.
[11] Moreira CDF, Carvalho SM, Sousa RG , et al. Nano-structured chitosan/gelatin/bioactive glass in situ forming hydrogel composites as a potential injecta-ble matrix for bone tissue engineering[J]. Mater Chem Phys, 2018,31(6):1270-1277.
[12] Zeeshan R, Mutahir Z, Iqbal H , et al. Hydroxypro-pylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair[J]. Carbohydr Polym, 2018,193:9-18.
[13] Ciołek L, Biernat M, Jaegermann Z , et al. Control-ling the microstructure of lyophilized porous bio-composites by the addition of ZnO-doped bioglass[J]. Int J Appl Ceram Technol, 2017,14(6):1107-1116.
[14] Oftadeh R, Perez-Viloria M, Villa-Camacho JC , et al. Biomechanics and mechanobiology of trabecular bone: a review[J]. J Biomech Eng, 2015,137(1). doi: 10.1115/1.4029176.
[15] Karageorgiou V, Kaplan D . Porosity of 3D biomate-rial scaffolds and osteogenesis[J]. Biomaterials, 2005,26(27):5474-5491.
[16] Martins T, Oliveira AAR, Oliveira AC , et al. Novel 3D composites with highly flexible behavior based on chitosan and bioactive glass for biomedical app-lications[J]. Mater Chem Phy, 2017,189:1-11.
[17] Motealleh A, Eqtesadi S, Perera FH , et al. Understan-ding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds[J]. J Mech Behav Biomed Mater, 2016,64:253-261.
[18] Ur Rehman MA, Bastan FE, Nawaz Q , et al. Electro-phoretic deposition of lawsone loaded bioactive glass (BG)/chitosan composite on polyetherether-ketone (PEEK)/BG layers as antibacterial and bioa-ctive coating[J]. J Biomed Mater Res A, 2018,106(12):3111-3122.
[19] Khoshakhlagh P, Rabiee SM, Kiaee G , et al. Deve-lopment and characterization of a bioglass/chitosan composite as an injectable bone substitute[J]. Carbo-hydr Polym, 2017,157:1261-1271.
[20] Jia WT, Zhang X, Luo SH , et al. Novel borate glass/chitosan composite as a delivery vehicle for teico-planin in the treatment of chronic osteomyelitis[J]. Acta Biomater, 2010,6(3):812-819.
[21] Cai L, Lin D, Chai Y , et al. MBG scaffolds containing chitosan microspheres for binary delivery of IL-8 and BMP-2 for bone regeneration[J]. J Mater Chem B, 2018,6(27):4453-4465.
[22] Zhang J, Chen Y, Xu J , et al. Tissue engineering using 3D printed nano-bioactive glass loaded with NELL1 gene for repairing alveolar bone defects[J]. Regen Biomater, 2018,5(4):213-220.
[23] Mandracci P, Mussano F, Rivolo P , et al. Surface treatments and functional coatings for biocompati-bility improvement and bacterial adhesion reduction in dental implantology[J]. Coatings, 2016,6(1):7.
[24] Mokhtari H, Ghasemi Z, Kharaziha M , et al. Chi-tosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: structural and biological properties[J]. Appl Surf Sci, 2018,441:138-149.
[25] Avcu E, Yıldıran Avcu Y, Baştan FE , et al. Tailoring the surface characteristics of electrophoretically de-posited chitosan-based bioactive glass composite coatings on titanium implants via grit blasting[J]. Prog Org Coat, 2018,123:362-373.
[26] Seuss S, Lehmann M, Boccaccini AR . Alternating current electrophoretic deposition of antibacterial bioactive glass-chitosan composite coatings[J]. Int J Mol Sci, 2014,15(7):12231-12242.
[27] Zhou T, Liu X, Sui B , et al. Development of fish collagen/bioactive glass/chitosan composite nanofi-bers as a GTR/GBR membrane for inducing perio-dontal tissue regeneration[J]. Biomed Mater, 2017,12(5):055004.
[28] Zhang J, Boyes V, Festy F , et al. In-vitro subsurface remineralisation of artificial enamel white spot lesions pre-treated with chitosan[J]. Dent Mater, 2018,34(8):1154-1167.
[29] Kim DA, Lee JH, Jun SK , et al. Sol-gel-derived bio-active glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced me-chanical and biomineralization properties[J]. Dent Mater, 2017,33(7):805-817.
[1] Chen Runzhi,Zhang Wentao,Chen Feng,Yang Fan. Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering [J]. Int J Stomatol, 2023, 50(6): 739-746.
[2] Wang Luming,Cao Xiao,Wu Linyue,Li Yuncong,Lei Bo,Niu Lin. Effect of Zn-doped bioactive glass nanoparticles on the mechanical properties of modified composite resin [J]. Int J Stomatol, 2022, 49(4): 404-411.
[3] Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70.
[4] Liu Yuhao,Zhang Tao. Research progress on shape memory polymers in bone defect repair and regeneration [J]. Int J Stomatol, 2020, 47(2): 219-224.
[5] Fang Yi,Siren Wang,Yanhao Chu,Yanqin. Lu. Research progress on the repair of alveolar cleft with bone tissue engineering scaffolds [J]. Inter J Stomatol, 2018, 45(5): 603-610.
[6] Jin Xin, Yang Junxing, Wang Yingnan, Liu Zhihui, Wang Bowei. Preparation and biomedical applications of alginate-chitosan microspheres [J]. Inter J Stomatol, 2018, 45(4): 414-419.
[7] Zhou Jie, Wang Ying, Zhang Lei, Wu Tingting, Zhou Yong, Zou Duohong. Characteristics of dental tissue-derived stem cells and their application in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 280-285.
[8] Liang Xinyu, Shi Jiabo, Chen Wenchuan, Zhu Zhimin. Research progress on synthetic nanosilicates in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 340-345.
[9] Zhang Yixin, Li Lei. Development of calcium phosphate scaffolds as drug delivery system in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 346-350.
[10] Wang Yang, Shen Yuqin, Yu Wenwen, Sun Xinhua. Reasearch progress on modified mesoporous bioactive glasses for repairing maxillofacial bone defects [J]. Inter J Stomatol, 2018, 45(1): 32-35.
[11] Zhang Jia, Liu Zhonghao. Research progress on strontium in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(1): 50-54.
[12] Huang Zihua, Wu Shiyu, Mai Sui. Review of bioactive resins in inducing dentin remineralization [J]. Inter J Stomatol, 2017, 44(4): 471-476.
[13] Zheng Jianmao, Mao Xueli, Ling Junqi.. Research progress on the Mg-based material scaffolds and its application in animal bone tissue engineering [J]. Int J Stomatol, 2015, 42(6): 720-723.
[14] Si Jiawen1, Guo Lihe2, Shen Guofang1. Biological characteristics and osteogenic differentiation of amniotic epithelial cells [J]. Inter J Stomatol, 2014, 41(5): 575-578.
[15] Tang Yuxin1, Jin Han1, Shi Ce1, Zhu Yang1, Wang Dandan1, Wang He1, Lin Chongtao2, Sun Hongchen1.. Adipose-derived stem cells and their importance to the regulatory mechanism of osteoblast differentiation [J]. Inter J Stomatol, 2014, 41(4): 418-423.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .