Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (4): 471-476.doi: 10.7518/gjkq.2017.04.020

• Reviews • Previous Articles     Next Articles

Review of bioactive resins in inducing dentin remineralization

Huang Zihua, Wu Shiyu, Mai Sui   

  1. Dept. of Conserva-tive Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2016-12-20 Revised:2017-02-10 Online:2017-07-01 Published:2017-07-01
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81100743), Guangdong Province International Science and Technology Cooperation Program(2013B051000031) and Guangdong Province Natural Science Foundation(2014A030313068).

Abstract: Dentin remineralization is one of the most important methods to improve resin-dentin bonding durability. However, the limited mineral ion supply limits the remineralization of demineralized dentine. Experimental adhesives doped with inorganic fillers are proven bioactive and can release mineral ions. These inorganic materials include silicate, calcium phosphate, and bioactive glass. Many studies have proven that these bioactive resins can induct the remineralization of dentine and protect collagen fibrils. Some of the studies also showed the poor mechanical properties of the resins. Synthesizing new bioactive resins with excellent mechanical properties is important. This review presents the effects of the bioactive restorative composite in dentin remineralization.

Key words: resin, bioactivity, silicate cement, amorphous calcium phosphate, bioactive glass

CLC Number: 

  • Q781.1

TrendMD: 
[1] Qi YP, Li N, Niu LN, et al. Remineralization of artificial dentinal caries lesions by biomimetically modified mineral trioxide aggregate[J]. Acta Bioma-ter, 2012, 8(2):836-842.
[2] Dai L, Liu Y, Salameh Z, et al. Can caries-affected dentin be completely remine-ralized by guided tissue remineralization[J]. Dent Hypotheses, 2011, 2(2): 74-82.
[3] Liu Y, Li N, Qi Y, et al. The use of sodium trime-taphosphate as a biomimetic analog of matrix pho-sphoproteins for remineralization of artificial caries-like dentin[J]. Dent Mater, 2011, 27(5):465-477.
[4] Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine[J]. Bio-materials, 2008, 29(8):1127-1137.
[5] Sauro S, Osorio R, Watson TF, et al. Influence of phosphoproteins’ biomimetic analogs on remine-ralization of mineral-depleted resin-dentin interfaces created with ion-releasing resin-based systems[J]. Dent Mater, 2015, 31(7):759-777.
[6] Profeta AC. Preparation and properties of calcium-silicate filled resins for dental restoration. Part Ⅰ: chemical-physical characterization and apatite-for-ming ability[J]. Acta Odontol Scand, 2014, 72(8): 597-606.
[7] Darvell BW, Wu RC. “MTA”—an hydraulic silicate cement: review update and setting reaction[J]. Dent Mater, 2011, 27(5):407-422.
[8] Camilleri J. Evaluation of selected properties of mineral trioxide aggregate sealer cement[J]. J Endod, 2009, 35(10):1412-1417.
[9] Kim YK, Gu LS, Bryan TE, et al. Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein ana-logues in the presence of calcium, phosphate and hydroxyl ions[J]. Biomaterials, 2010, 31(25):6618- 6627.
[10] Liu Y, Li N, Qi YP, et al. Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly[J]. Adv Mater Weinheim, 2011, 23(8):975-980.
[11] Liu Y, Kim YK, Dai L, et al. Hierarchical and non-hierarchical mineralisation of collagen[J]. Bioma-terials, 2011, 32(5):1291-1300.
[12] Gu LS, Kim YK, Liu Y, et al. Immobilization of a phosphonated analog of matrix phosphoproteins within cross-linked collagen as a templating me-chanism for biomimetic mineralization[J]. Acta Biomater, 2011, 7(1):268-277.
[13] Profeta AC, Mannocci F, Foxton R, et al. Expe-rimental etch-and-rinse adhesives doped with bioac-tive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces[J]. Dent Mater, 2013, 29(7):729-741.
[14] Wang Z, Shen Y, Haapasalo M, et al. Polycarboxy-lated microfillers incorporated into light-curable resin-based dental adhesives evoke remineralization at the mineral-depleted dentin[J]. J Biomater Sci Polym Ed, 2014, 25(7):679-697.
[15] Sauro S, Osorio R, Osorio E, et al. Novel light-cura-ble materials containing experimental bioactive micro-fillers remineralise mineral-depleted bonded-dentine interfaces[J]. J Biomater Sci Polym Ed, 2013, 24(8):940-956.
[16] Gandolfi MG, Taddei P, Siboni F, et al. Biomimetic remineralization of human dentin using promising innovative calcium-silicate hybrid ‘smart’ materials [J]. Dent Mater, 2011, 27(11):1055-1069.
[17] Rodrigues MC, Natale LC, Arana-Chaves VE, et al. Calcium and phosphate release from resin-based materials containing different calcium orthopho-sphate nanoparticles[J]. J Biomed Mater Res Part B Appl Biomater, 2015, 103(8):1670-1678.
[18] Qidwai M, Sheraz MA, Ahmed S, et al. Preparation and characterization of bioactive composites and fibers for dental applications[J]. Dent Mater, 2014, 30(10):e253-e263.
[19] Chiari MD, Rodrigues MC, Xavier TA, et al. Me-chanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles[J]. Dent Mater, 2015, 31(6):726-733.
[20] Melo MA, Cheng L, Zhang K, et al. Novel dental ad-hesives containing nanoparticles of silver and amor-phous calcium phosphate[J]. Dent Mater, 2013, 29 (2):199-210.
[21] Moreau JL, Sun L, Chow LC, et al. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocom-posite[J]. J Biomed Mater Res Part B Appl Biomater, 2011, 98(1):80-88.
[22] Xu HH, Moreau JL, Sun L, et al. Nanocomposite containing amorphous calcium phosphate nanopar-ticles for caries inhibition[J]. Dent Mater, 2011, 27 (8):762-769.
[23] Ünal M, Oznurhan F, Kapdan A, et al. A com-parative clinical study of three fissure sealants on primary teeth: 24-month results[J]. J Clin Pediatr Dent, 2015, 39(2):113-119.
[24] Paschos E, Geiger FJ, Malyk Y, et al. Efficacy of four preventive measures against enamel demine-ralization at the bracket periphery-comparison of microhardness and confocal laser microscopy ana-lysis[J]. Clin Oral Investig, 2016, 20(6):1355-1366.
[25] Marovic D, Tarle Z, Hiller KA, et al. Reinforcement of experimental composite materials based on amorphous calcium phosphate with inert fillers[J]. Dent Mater, 2014, 30(9):1052-1060.
[26] Xu HH, Moreau JL. Dental glass-reinforced com-posite for caries inhibition: calcium phosphate ion release and mechanical properties[J]. J Biomed Mater Res Part B Appl Biomater, 2010, 92(2):332- 340.
[27] Marovic D, Tarle Z, Hiller KA, et al. Effect of silanized nanosilica addition on remineralizing and mechanical properties of experimental composite materials with amorphous calcium phosphate[J]. Clin Oral Investig, 2014, 18(3):783-792.
[28] Xu HH, Weir MD, Sun L, et al. Strong nanocom-posites with Ca, PO 4 , and F release for caries inhibi-tion[J]. J Dent Res, 2010, 89(1):19-28.
[29] Weir MD, Chow LC, Xu HH. Remineralization of demineralized enamel via calcium phosphate nano-composite[J]. J Dent Res, 2012, 91(10):979-984.
[30] Jones JR. Review of bioactive glass: from hench to hybrids[J]. Acta Biomater, 2013, 9(1):4457-4486.
[31] Wang Z, Jiang T, Sauro S, et al. The dentine re-mineralization activity of a desensitizing bioactive glass-containing toothpaste: an in vitro study[J]. Aust Dent J, 2011, 56(4):372-381.
[32] Sauro S, Watson TF, Thompson I, et al. One-bottle self-etching adhesives applied to dentine air-abraded using bioactive glasses containing polyacrylic acid: an in vitro microtensile bond strength and confocal microscopy study[J]. J Dent, 2012, 40(11):896-905.
[33] Profeta AC, Mannocci F, Foxton RM, et al. Bioac-tive effects of a calcium/sodium phosphosilicate on the resin-dentine interface: a microtensile bond strength, scanning electron microscopy, and confocal microscopy study[J]. Eur J Oral Sci, 2012, 120(4): 353-362.
[34] Sauro S, Osorio R, Watson TF, et al. Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentine interface[J]. J Mater Sci Mater Med, 2012, 23(6):1521-1532.
[35] Khvostenko D, Mitchell JC, Hilton TJ, et al. Mecha-nical performance of novel bioactive glass containing dental restorative composites[J]. Dent Mater, 2013, 29(11):1139-1148.
[36] Tauböck TT, Zehnder M, Schweizer T, et al. Func-tionalizing a dentin bonding resin to become bioac-tive[J]. Dent Mater, 2014, 30(8):868-875.
[37] Osorio R, Yamauti M, Sauro S, et al. Experimental resin cements containing bioactive fillers reduce matrix metalloproteinase-mediated dentin collagen degradation[J]. J Endod, 2012, 38(9):1227-1232.
[38] Khvostenko D, Hilton TJ, Ferracane JL, et al. Bioac-tive glass fillers reduce bacterial penetration into marginal gaps for composite restorations[J]. Dent Mater, 2016, 32(1):73-81.
[39] Profeta AC. Dentine bonding agents comprising calcium-silicates to support proactive dental care: origins, development and future[J]. Dent Mater J, 2014, 33(4):443-452.
[1] Xue Jing, Yang Jing.. Key points of evidence-based practice for the Class Ⅱ cavity composite resin restoration [J]. Int J Stomatol, 2023, 50(4): 375-387.
[2] Wang Gang,Chen Zhuo.. Reduction of the risk of caries after interproximal enamel reduction [J]. Int J Stomatol, 2023, 50(4): 395-400.
[3] Wang Qiqiu,Zhi Qinghui.. Research progress on treatments of enamel white spot lesions [J]. Int J Stomatol, 2022, 49(6): 717-723.
[4] Wang Luming,Cao Xiao,Wu Linyue,Li Yuncong,Lei Bo,Niu Lin. Effect of Zn-doped bioactive glass nanoparticles on the mechanical properties of modified composite resin [J]. Int J Stomatol, 2022, 49(4): 404-411.
[5] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[6] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[7] Liu Yuchen,Tian Min,Niu Lina,Fang Ming. Factors influencing the survival rates of resin-bonded fixed partial dentures and improvement measures [J]. Int J Stomatol, 2021, 48(5): 585-591.
[8] Meng Xiuping,Hou Jianhua,Li Yiran,Sun Mengyao. Research progress on the selection and design of base materials in deep margin elevation [J]. Int J Stomatol, 2021, 48(3): 280-286.
[9] Xue Jing. Development and clinical application of proximal matrix system [J]. Int J Stomatol, 2020, 47(6): 621-626.
[10] Zhang Jingting,Pan Xudong,Zhang Wenyun. Effect of opaque-shade resin layer thickness on the color of polyetheretherketone-Crea.lign restoration [J]. Int J Stomatol, 2020, 47(4): 418-423.
[11] Zou Jundong,Liu Dingkun,Yang Nan,Wang Mi,Liu Zhihui. An overview of bioactive glasses/chitosan composites for biomedical applications [J]. Int J Stomatol, 2020, 47(1): 90-94.
[12] Wang Yang, Shen Yuqin, Yu Wenwen, Sun Xinhua. Reasearch progress on modified mesoporous bioactive glasses for repairing maxillofacial bone defects [J]. Inter J Stomatol, 2018, 45(1): 32-35.
[13] Liang Jichao, Wang Fen, Zhang Zhenghua, Pang Fusheng, Hou Meijuan, Zhang Fengying. Clinical evaluation of interproximal caries restoration with orthodontic elastic separators [J]. Inter J Stomatol, 2017, 44(4): 440-444.
[14] Yao Chenmin, Zhou Liqun, Huang Cui.. Selection of tooth-colored restorative material for worn anterior teeth [J]. Inter J Stomatol, 2017, 44(3): 363-367.
[15] Ma Zhiling1, Liu Jie2. Effects of different surface treatments on the bonding strength of titanium and resin [J]. Inter J Stomatol, 2017, 44(1): 45-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .