Int J Stomatol ›› 2022, Vol. 49 ›› Issue (4): 476-482.doi: 10.7518/gjkq.2022067

• Reviews • Previous Articles     Next Articles

Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects

Zhang Xidan(),Sun Jiyu,Fu Xinliang,Gan Xueqi.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-10-02 Revised:2022-03-08 Online:2022-07-01 Published:2022-06-28
  • Contact: Xueqi. Gan E-mail:2020224035068@scu.edu.cn;xueqigan@scu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(81870802)

Abstract:

Mesoporous calcium silicate nanoparticles (MCSNs), a novel bioactive material with a nanoscale size and an ordered mesoporous channel structure, possess excellent biocompatibility, bioactivity, antibacterial properties, and drug delivery characteristics. Besides, they can be modified by metal elements and improve the properties of biocomposites. Therefore, the development of MCSNs is currently a research focus in stomatology. MCSNs have antibacterial activity against a range of common oral pathogens. Moreover, they can cover the root canal wall, infiltrate the dentinal tubules, and induce cementum tissue regeneration; therefore, they have a potential in the endodontics field. Furthermore, MCSN scaffold showed excellent ability in osteogenesis and modification and thus could be potentially applied in oral and maxillofacial surgeries. This article reviews the biological properties and research progress of MCSNs in endodontics and their application in the repair of maxillofacial bone defects and provides preliminary experimental basis for further research on MCSNs.

Key words: mesoporous calcium-silicate nanoparticle, biocompatibility, bioactivity, antibacterial property, drug delivery property, biological property, endodontics, maxillofacial bone defect

CLC Number: 

  • R 318.08

TrendMD: 
1 陈燕活, 安少锋, 高燕. 硅酸钙类盖髓剂生物学性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 459-464.
Chen YH, An SF, Gao Y. Research progress on the biological properties of calcium silicate-based pulp capping agents[J]. Int J Stomatol, 2018, 45(4): 459-464.
2 Wu CT, Chang J, Fan W. Bioactive mesoporous calcium-silicate nanoparticles with excellent minera-lization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth[J]. J Mater Chem, 2012, 22(33): 16801.
3 Huang KH, Wang CY, Chen CY, et al. Incorporation of calcium sulfate dihydrate into a mesoporous calcium silicate/poly‑ε‑caprolactone scaffold to regulate the release of bone morphogenetic protein-2 and accelerate bone regeneration[J]. Biomedicines, 2021, 9(2): 128.
4 Huang CY, Huang TH, Kao CT, et al. Mesoporous calcium silicate nanoparticles with drug delivery and odontogenesis properties[J]. J Endod, 2017, 43(1): 69-76.
5 Chen YC, Shie MY, Wu YA, et al. Anti-inflammation performance of curcumin-loaded mesoporous calcium silicate cement[J]. J Formos Med Assoc, 2017, 116(9): 679-688.
6 范启航. 纳米介孔钙硅颗粒在抗菌和体外矿化成骨中的作用研究[D]. 武汉: 武汉大学, 2018.
Fan QH. The role of mesoporous calcium silicate nanoparticles in ex vivo antibacterial activity, mine-ralization and osteogenesis[D]. Wuhan: Wuhan University, 2018.
7 Sun Q, Duan MT, Fan W, et al. Ca-Si mesoporous nanoparticles with the optimal Ag-Zn ratio inhibit the Enterococcus faecalis infection of teeth through dentinal tubule infiltration: an in vitro and in vivo study[J]. J Mater Chem B, 2021, 9(9): 2200-2211.
8 Leng DY, Li Y, Zhu J, et al. The antibiofilm activity and mechanism of nanosilver-and nanozinc-incorporated mesoporous calcium-silicate nanoparticles[J]. Int J Nanomedicine, 2020, 15: 3921-3936.
9 Zhou YX, Quan GL, Wu QL, et al. Mesoporous silica nanoparticles for drug and gene delivery[J]. Acta Pharm Sin B, 2018, 8(2): 165-177.
10 Zheng K, Boccaccini AR. Sol-gel processing of bioactive glass nanoparticles: a review[J]. Adv Colloid Interface Sci, 2017, 249: 363-373.
11 Huang KH, Chen YW, Wang CY, et al. Enhanced capability of bone morphogenetic protein 2-loaded mesoporous calcium silicate scaffolds to induce odontogenic differentiation of human dental pulp cells[J]. J Endod, 2018, 44(11): 1677-1685.
12 Peng XY, Hu M, Liao F, et al. La-Doped mesoporous calcium silicate/chitosan scaffolds for bone tissue engineering[J]. Biomater Sci, 2019, 7(4): 1565-1573.
13 Fan W, Li YY, Sun Q, et al. Calcium-silicate mesoporous nanoparticles loaded with chlorhexidine for both anti-Enterococcus faecalis and mineralization properties[J]. J Nanobiotechnology, 2016, 14(1): 72.
14 Wang SC, Gu ZR, Wang ZW, et al. Influences of mesoporous magnesium calcium silicate on minera-lization, degradability, cell responses, curcumin release from macro-mesoporous scaffolds of gliadin based biocomposites[J]. Sci Rep, 2018, 8(1): 174.
15 Fan W, Wu DM, Tay FR, et al. Effects of adsorbed and templated nanosilver in mesoporous calcium-si-licate nanoparticles on inhibition of bacteria colonization of dentin[J]. Int J Nanomedicine, 2014, 9: 5217-5230.
16 Fan QH, Li YY, Ma TJ, et al. Antibacterial and functional properties enhancement of mesoporous cal-cium-silicate nanoparticles by coupling with quaternary ammonium chloride[J]. Nanosci Nanotechnol Lett, 2017, 9(9): 1338-1345.
17 Obata A, Ogasawara T, Kasuga T. Combinatorial effects of inorganic ions on adhesion and proliferation of osteoblast-like cells[J]. J Biomed Mater Res A, 2019, 107(5): 1042-1051.
18 Srinath P, Abdul Azeem P, Venugopal Reddy K. Review on calcium silicate-based bioceramics in bone tissue engineering[J]. Int J Appl Ceram Technol, 2020, 17(5): 2450-2464.
19 Yu TJ, Wang Y, Cai Q, et al. Efficacy of Ca2+-or PO4 3--conjugated mesoporous silica nanoparticles on dentinal tubule occlusion: an in-vitro assessment[J]. Ann Transl Med, 2020, 8(5): 173.
20 Kao CT, Chen YJ, Huang TH, et al. Assessment of the release profile of fibroblast growth factor-2-load mesoporous calcium silicate/poly‑ε‑caprolactone 3D scaffold for regulate bone regeneration[J]. Processes, 2020, 8(10): 1249.
21 Liao F, Peng XY, Yang F, et al. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability[J]. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109999.
22 Guimarães RS, Rodrigues CF, Moreira AF, et al. Overview of stimuli-responsive mesoporous organosilica nanocarriers for drug delivery[J]. Pharmacol Res, 2020, 155: 104742.
23 Kankala RK, Han YH, Na J, et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles[J]. Adv Mater, 2020, 32(23): e1907035.
24 Xie CL, Li P, Liu Y, et al. Preparation of TiO2 nanotubes/mesoporous calcium silicate composites with controllable drug release[J]. Mater Sci Eng C Mater Biol Appl, 2016, 67: 433-439.
25 Jafari S, Derakhshankhah H, Alaei L, et al. Mesoporous silica nanoparticles for therapeutic/diagnostic applications[J]. Biomed Pharmacother, 2019, 109: 1100-1111.
26 Zhu YF, Zhu M, He X, et al. Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties[J]. Acta Biomater, 2013, 9(5): 6723-6731.
27 Kheiri S, Liu XY, Thompson M. Nanoparticles at biointerfaces: antibacterial activity and nanotoxico-logy[J]. Colloids Surf B Biointerfaces, 2019, 184: 110550.
28 Zhu J, Liang RZ, Sun C, et al. Effects of nanosilver and nanozinc incorporated mesoporous calcium-silicate nanoparticles on the mechanical properties of dentin[J]. PLoS One, 2017, 12(8): e0182583.
29 Yu CT, Wang FM, Liu YT, et al. Effect of bone morphogenic protein-2-loaded mesoporous strontium substitution calcium silicate/recycled fish gelatin 3D cell-laden scaffold for bone tissue engineering[J]. Processes, 2020, 8(4): 493.
30 Fan Y, Huang SS, Jiang JH, et al. Luminescent, me-soporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier[J]. J Colloid Interface Sci, 2011, 357(2): 280-285.
31 罗惟丹, 李明云, 周学东, 等. 纳米羟磷灰石在牙体修复和牙髓治疗领域的应用[J]. 国际口腔医学杂志, 2018, 45(2): 192-198.
Luo WD, Li MY, Zhou XD, et al. Application of nano-hydroxyapatite in the clinical treatment of oral diseases[J]. Int J Stomatol, 2018, 45(2): 192-198.
32 Zhang ZN, Lin T, Shao HP, et al. Effect of different dopants on porous calcium silicate composite bone scaffolds by 3D gel-printing[J]. Ceram Int, 2020, 46(1): 325-330.
[1] Huang Xin,Xu Xiaojie,Zhang Ronghua,Zhao Yuan. A review of pulp calcification and its treatment methods [J]. Int J Stomatol, 2024, 51(1): 82-90.
[2] Yan Yujia,Zou Ling.. Reseach progress on bioceramic root canal sealer [J]. Int J Stomatol, 2022, 49(5): 578-585.
[3] Peng Weiqi,Gao Yuan,Xu Xin. The minimally invasive concept and research progress on access cavity design [J]. Int J Stomatol, 2021, 48(4): 433-438.
[4] Ji Mengzhen,Qi Meiyao,Du Kexin,Quan Shuqi,Zhang Yuqiang,Zheng Qinghua. Three-dimensional finite element study on the effect of pulp opening cavity on the resistance of cracked teeth after full crown restoration [J]. Int J Stomatol, 2021, 48(1): 41-49.
[5] Wang Huan,Liu Yang,Qi Mengchun,Li Jingyi,Liu Mengnan,Sun Hong. Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation [J]. Int J Stomatol, 2020, 47(4): 439-444.
[6] Liu Tongxi,Ke Xing,Yang Jian. Applications and prospects on endodontics based on magnetic resonance imaging [J]. Int J Stomatol, 2019, 46(6): 693-698.
[7] Yidi Jiang,Chenglin Wang,Ling Ye. Complications of regenerative endodontics [J]. Inter J Stomatol, 2019, 46(1): 73-77.
[8] Mengqi Liu,Kuo Gai,Li Jiang. Research progress on oral implant materials with antimicrobial properties [J]. Inter J Stomatol, 2018, 45(5): 516-521.
[9] Xueyang Deng,Lanlan Pan,Ting Hu,Wenhua Li,Xuerong. Xiang. Preparation of graphene oxide coatings on titanium alloy surface [J]. Inter J Stomatol, 2018, 45(5): 539-545.
[10] Zeng Yue, Xia Haibin, Wang Min. Research progress on the mechanical and antibacterial properties of nanomaterial-modified denture base [J]. Inter J Stomatol, 2018, 45(4): 455-458.
[11] Wang Yang, Shen Yuqin, Yu Wenwen, Sun Xinhua. Reasearch progress on modified mesoporous bioactive glasses for repairing maxillofacial bone defects [J]. Inter J Stomatol, 2018, 45(1): 32-35.
[12] Huang Zihua, Wu Shiyu, Mai Sui. Review of bioactive resins in inducing dentin remineralization [J]. Inter J Stomatol, 2017, 44(4): 471-476.
[13] Lei Qiyin, Chen Ke.. Research progress on the clinical treatment of regenerative endodontics in immature permanent teeth [J]. Inter J Stomatol, 2017, 44(3): 267-272.
[14] Zhang Chen, Wang Jing, Hou Benxiang. Solutions on standardized clinical training of endodontic residents [J]. Inter J Stomatol, 2016, 43(3): 260-262.
[15] Gao Jing, Shen Jing, Zhang Haifeng, Jin Shufeng. Outcome of root canal treatment of experimental apical periodontitis determined by periapical radiography and cone beam computed tomography scans [J]. Inter J Stomatol, 2016, 43(3): 292-294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .