Int J Stomatol ›› 2021, Vol. 48 ›› Issue (4): 433-438.doi: 10.7518/gjkq.2021076

• Reviews • Previous Articles     Next Articles

The minimally invasive concept and research progress on access cavity design

Peng Weiqi(),Gao Yuan,Xu Xin()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-01-08 Revised:2021-04-02 Online:2021-07-01 Published:2021-06-30
  • Contact: Xin Xu E-mail:pengwq27@foxmail.com;nixux1982@hotmail.com
  • Supported by:
    National Natural Science Foundation of China(81771099);Applied Basic Research Foundation of Sichuan Science and Technology Department(2019YJ0074)

Abstract:

Pulp and periapical diseases are common clinical oral diseases, and root canal therapy is the most effective option for these diseases. Access cavity preparation is the first step of root canal therapy. A well-designed access cavity is crucial to the success of root canal therapy. In recent years, with the concept of minimally invasive endodontics proposed, a minimally invasive improvement of traditional endodontic cavities is recommended, which emphasizes the purposeful preservation of part of the chamber roof and peri-cervical dentin to preserve the healthy tooth tissue as much as possible. Although minimal access cavity designs can reduce the stress concentration in the cervical regions, evidence on its improvement of the fracture resistance of the endodontically treated teeth is lacking. Moreover, minimally invasive access may complicate treatment and increase the difficulty of root canal therapy, which may affect the effect of root canal therapy and increase the prevalence of iatrogenic complications during endodontic procedures. This article reviews the minimally invasive concept of access cavity design and its research progress in the effect of root canal therapy and fracture resistance of teeth.

Key words: minimally invasive endodontics, preservation of tooth structure, endodontic cavity, root canal therapy, fracture resistance

CLC Number: 

  • R781.05

TrendMD: 
[1] Yahata Y, Masuda Y, Komabayashi T. Comparison of apical centring ability between incisal-shifted access and traditional lingual access for maxillary anterior teeth[J]. Aust Endod J, 2017,43(3):123-128.
doi: 10.1111/aej.2017.43.issue-3
[2] Patel S, Rhodes J. A practical guide to endodontic access cavity preparation in molar teeth[J]. Br Dent J, 2007,203(3):133-140.
pmid: 17694021
[3] Schroeder KP, Walton RE, Rivera EM. Straight line access and coronal flaring: effect on canal length[J]. J Endod, 2002,28(6):474-476.
doi: 10.1097/00004770-200206000-00015
[4] Gutmann JL. Minimally invasive dentistry (Endo-dontics)[J]. J Conserv Dent, 2013,16(4):282-283.
doi: 10.4103/0972-0707.114342
[5] Bürklein S, Schäfer E. Minimally invasive endodontics[J]. Quintessence Int, 2015,46(2):119-124.
[6] Al Amri MD, Al-Johany S, Sherfudhin H, et al. Fracture resistance of endodontically treated mandibular first molars with conservative access cavity and different restorative techniques: an in vitro study[J]. Aust Endod J, 2016,42(3):124-131.
doi: 10.1111/aej.2016.42.issue-3
[7] Lang H, Korkmaz Y, Schneider K, et al. Impact of endodontic treatments on the rigidity of the root[J]. J Dent Res, 2006,85(4):364-368.
pmid: 16567560
[8] Tzimpoulas NE, Alisafis MG, Tzanetakis GN, et al. A prospective study of the extraction and retention incidence of endodontically treated teeth with uncertain prognosis after endodontic referral[J]. J Endod, 2012,38(10):1326-1329.
doi: 10.1016/j.joen.2012.06.032 pmid: 22980171
[9] Ibrahim AM, Richards LC, Berekally TL. Effect of remaining tooth structure on the fracture resistance of endodontically-treated maxillary premolars: an in vitro study[J]. J Prosthet Dent, 2016,115(3):290-295.
doi: 10.1016/j.prosdent.2015.08.013
[10] Santos Pantaleón D, Morrow BR, Cagna DR, et al. Influence of remaining coronal tooth structure on fracture resistance and failure mode of restored endodontically treated maxillary incisors[J]. J Prosthet Dent, 2018,119(3):390-396.
doi: S0022-3913(17)30363-3 pmid: 28756865
[11] Clark D, Khademi JA. Case studies in modern molar endodontic access and directed dentin conservation[J]. Dent Clin North Am, 2010,54(2):275-289.
doi: 10.1016/j.cden.2010.01.003
[12] Clark D, Khademi J. Modern molar endodontic access and directed dentin conservation[J]. Dent Clin North Am, 2010,54(2):249-273.
doi: 10.1016/j.cden.2010.01.001
[13] 蒋宏伟. 微创牙髓治疗的理论与实践[J]. 中华口腔医学杂志, 2016,51(8):460-464.
Jiang HW. Theory and practice of minimally inva-sive endodontics[J]. Chin J Stomatol, 2016,51(8):460-464.
[14] Krishan R, Paqué F, Ossareh A, et al. Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars[J]. J Endod, 2014,40(8):1160-1166.
doi: 10.1016/j.joen.2013.12.012 pmid: 25069925
[15] Plotino G, Grande NM, Isufi A, et al. Fracture streng-th of endodontically treated teeth with different access cavity designs[J]. J Endod, 2017,43(6):995-1000.
doi: 10.1016/j.joen.2017.01.022
[16] Corsentino G, Pedullà E, Castelli L, et al. Influence of access cavity preparation and remaining tooth substance on fracture strength of endodontically treated teeth[J]. J Endod, 2018,44(9):1416-1421.
doi: S0099-2399(18)30351-0 pmid: 30049468
[17] Neelakantan P, Khan K, Hei Ng GP, et al. Does the orifice-directed dentin conservation access design debride pulp chamber and mesial root canal systems of mandibular molars similar to a traditional access design[J]. J Endod, 2018,44(2):274-279.
doi: S0099-2399(17)31191-3 pmid: 29273493
[18] Krastl G, Zehnder MS, Connert T, et al. Guided endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology[J]. Dent Traumatol, 2016,32(3):240-246.
doi: 10.1111/edt.2016.32.issue-3
[19] Connert T, Zehnder MS, Amato M, et al. Microguided endodontics: a method to achieve minimally invasive access cavity preparation and root canal location in mandibular incisors using a novel computer-guided technique[J]. Int Endod J, 2018,51(2):247-255.
doi: 10.1111/iej.12809 pmid: 28665514
[20] Bóveda C, Kishen A. Contracted endodontic cavities: the foundation for less invasive alternatives in the management of apical periodontitis[J]. Endod Top, 2015,33(1):169-186.
doi: 10.1111/etp.2015.33.issue-1
[21] Rover G, Belladonna FG, Bortoluzzi EA, et al. Influence of access cavity design on root canal detection, instrumentation efficacy, and fracture resistance assessed in maxillary molars[J]. J Endod, 2017,43(10):1657-1662.
doi: 10.1016/j.joen.2017.05.006
[22] Saygili G, Uysal B, Omar B, et al. Evaluation of relationship between endodontic access cavity types and secondary mesiobuccal canal detection[J]. BMC Oral Health, 2018,18(1):121.
doi: 10.1186/s12903-018-0570-y pmid: 29980211
[23] Mendes EB, Soares AJ, Martins JNR, et al. Influence of access cavity design and use of operating microscope and ultrasonic troughing to detect middle mesial canals in extracted mandibular first molars[J]. Int Endod J, 2020,53(10):1430-1437.
doi: 10.1111/iej.v53.10
[24] 张萦雪. 微创牙髓治疗对根管内细菌清理效果的体外研究[D]. 天津: 天津医科大学口腔医学院, 2019.
Zhang YX. The effect of minimally invasive endo-dontics treatment on bacterial clearance in root ca-nal: an in vitro study[D]. Tianjin: School of Stoma-tology,Tianjin Medical University, 2019.
[25] Vieira GCS, Pérez AR, Alves FRF, et al. Impact of contracted endodontic cavities on root canal disinfection and shaping[J]. J Endod, 2020,46(5):655-661.
doi: S0099-2399(20)30083-2 pmid: 32201072
[26] Tüfenkçi P, Yılmaz K. The effects of different en-dodontic access cavity design and using XP-endo finisher on the reduction of enterococcus faecalis in the root canal system[J]. J Endod, 2020,46(3):419-424.
doi: S0099-2399(19)30916-1 pmid: 31980201
[27] Moore B, Verdelis K, Kishen A, et al. Impacts of contracted endodontic cavities on instrumentation efficacy and biomechanical responses in maxillary molars[J]. J Endod, 2016,42(12):1779-1783.
doi: 10.1016/j.joen.2016.08.028
[28] Eaton JA, Clement DJ, Lloyd A, et al. Micro-computed tomographic evaluation of the influence of root canal system landmarks on access outline forms and canal curvatures in mandibular molars[J]. J Endod, 2015,41(11):1888-1891.
doi: 10.1016/j.joen.2015.08.013
[29] Alovisi M, Pasqualini D, Musso E, et al. Influence of contracted endodontic access on root canal geometry: an in vitro study[J]. J Endod, 2018,44(4):614-620.
doi: S0099-2399(17)31237-2 pmid: 29336881
[30] Trivedi S. Finite element analysis: a boon to dentistry[J]. J Oral Biol Craniofac Res, 2014,4(3):200-203.
doi: 10.1016/j.jobcr.2014.11.008 pmid: 25737944
[31] 刘子嫣, 赵凌, 杨丽媛, 等. 开髓方式与全冠修复对上颌中切牙应力分布影响的三维有限元分析[J]. 华西口腔医学杂志, 2019,37(6):642-647.
Liu ZY, Zhao L, Yang LY, et al. Three-dimensional finite element analysis of different endodontic access methods and full crown restoration in the maxillary central incisor[J]. West China J Stomatol, 2019,37(6):642-647.
[32] Yuan K, Niu C, Xie Q, et al. Comparative evaluation of the impact of minimally invasive preparation vs. conventional straight-line preparation on tooth biomechanics: a finite element analysis[J]. Eur J Oral Sci, 2016,124(6):591-596.
doi: 10.1111/eos.2016.124.issue-6
[33] Allen C, Meyer CA, Yoo E, et al. Stress distribution in a tooth treated through minimally invasive access compared to one treated through traditional access: a finite element analysis study[J]. J Conserv Dent, 2018,21(5):505-509.
doi: 10.4103/JCD.JCD_260_18
[34] Jiang Q, Huang Y, Tu X, et al. Biomechanical properties of first maxillary molars with different endodontic cavities: a finite element analysis[J]. J Endod, 2018,44(8):1283-1288.
doi: 10.1016/j.joen.2018.04.004
[35] Zhang YY, Liu YX, She YH, et al. The effect of endodontic access cavities on fracture resistance of first maxillary molar using the extended finite element method[J]. J Endod, 2019,45(3):316-321.
doi: S0099-2399(18)30836-7 pmid: 30803539
[36] Makati D, Shah NC, Brave D, et al. Evaluation of remaining dentin thickness and fracture resistance of conventional and conservative access and biomecha-nical preparation in molars using cone-beam computed tomography: an in vitro study[J]. J Conserv Dent, 2018,21(3):324-327.
doi: 10.4103/JCD.JCD_311_17
[37] Chlup Z, Žižka R, Kania J, et al. Fracture behaviour of teeth with conventional and mini-invasive access cavity designs[J]. J Eur Ceram Soc, 2017,37(14):4423-4429.
doi: 10.1016/j.jeurceramsoc.2017.03.025
[38] Sabeti M, Kazem M, Dianat O, et al. Impact of access cavity design and root canal taper on fracture resistance of endodontically treated teeth: an ex vivo investigation[J]. J Endod, 2018,44(9):1402-1406.
doi: 10.1016/j.joen.2018.05.006
[39] Barbosa AFA, Silva EJNL, Coelho BP, et al. The influence of endodontic access cavity design on the efficacy of canal instrumentation, microbial reduction, root canal filling and fracture resistance in mandibular molars[J]. Int Endod J, 2020,53(12):1666-1679.
doi: 10.1111/iej.v53.12
[40] Özyürek T, Ülker Ö, Demiryürek EÖ, et al. The effects of endodontic access cavity preparation design on the fracture strength of endodontically treated tee-th: traditional versus conservative preparation[J]. J Endod, 2018,44(5):800-805.
doi: S0099-2399(18)30077-3 pmid: 29571907
[41] Silva EJNL, Rover G, Belladonna FG, et al. Impact of contracted endodontic cavities on fracture resistance of endodontically treated teeth: a systematic review of in vitro studies[J]. Clin Oral Investig, 2018,22(1):109-118.
doi: 10.1007/s00784-017-2268-y
[1] Wang Mudan,Song Dongzhe,Huang Dingming.. Research progress on fracture resistance of endodontically treated teeth with different endodontic access cavities [J]. Int J Stomatol, 2023, 50(2): 186-194.
[2] Ji Mengzhen,Qi Meiyao,Du Kexin,Quan Shuqi,Zhang Yuqiang,Zheng Qinghua. Three-dimensional finite element study on the effect of pulp opening cavity on the resistance of cracked teeth after full crown restoration [J]. Int J Stomatol, 2021, 48(1): 41-49.
[3] Ning Chenxi,Li Xia. Research progress on the effect of root canal sealers on root fracture resistance [J]. Int J Stomatol, 2020, 47(6): 711-716.
[4] Tang Bei,Zhao Wenjun,Wang Hu,Zheng Guangning,You Meng. Inferior alveolar nerve injury due to apical overfilling: two cases reports [J]. Int J Stomatol, 2020, 47(3): 293-296.
[5] Ma Yanqun, Li Hong, Hou Benxiang. Research progress on the new attachment of apical periodontal ligament [J]. Inter J Stomatol, 2018, 45(3): 331-334.
[6] Huang Xiaoxiang, Zhang Ru, Hou Benxiang.. The effect of anatomy of apical zone of permanent teeth on root canal therapy [J]. Inter J Stomatol, 2017, 44(3): 261-266.
[7] Li Shaorong, Zhang Ru, Hou Benxiang.. The effect of intracanal medications on mechanical properties of teeth [J]. Inter J Stomatol, 2017, 44(3): 273-278.
[8] Liang Jichao, Wang Fen, Zhang Fengying, Zhang Zhenghua, Hou Meijuan, Pang Fusheng, Zhou Feng. Comparison of the accuracy of Digora and Propex on the measurement of working length of root canal [J]. Inter J Stomatol, 2016, 43(5): 515-518.
[9] Ju Yingxin, Liu Luchuan. Application of erbium laser to treat periapical diseases [J]. Inter J Stomatol, 2016, 43(4): 473-476.
[10] Lu Zhiyue. Fracture resistance of post-core restored root [J]. Inter J Stomatol, 2015, 42(2): 125-129.
[11] Liu Yali, Li Xia. Application of cone-beam computed tomography during C-shaped root canal therapy in mandibular second molars [J]. Inter J Stomatol, 2015, 42(2): 181-183.
[12] Zhu Yuting, Liu Jiangfeng, Huang Jiangyong, Xu Yan, Li Yanli, Li Xiaoxing, Chen Bingxun. Clinical evaluation of HyFlex CM instruments in root canal preparation [J]. Inter J Stomatol, 2014, 41(5): 521-525.
[13] Zhao Pengpeng, Qin Zongchang.. Root canal therapy and microcracks of the root canal wall [J]. Inter J Stomatol, 2014, 41(4): 478-482.
[14] Ge Jiuyu, Hou Benxiang, Yu Qing, Huang Dingming, Peng Bin. Need remove instrument separation in root canal therapy [J]. Inter J Stomatol, 2014, 41(1): 7-12.
[15] Yan Wen, Li Wei.. Cytotoxicity and genotoxicity of dental filling materials utilized in endodontic thera [J]. Inter J Stomatol, 2013, 40(5): 608-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .