Int J Stomatol ›› 2022, Vol. 49 ›› Issue (4): 412-419.doi: 10.7518/gjkq.2022068
• Original Articles • Previous Articles Next Articles
Zhang Jingyi1(),Li Danwei1(),Sun Yu2,Lei Yayan1,Liu Tao1,Gong Yu1
CLC Number:
1 | 吴佳益, 李鑫, 汪成林, 等. 炎症性牙根外吸收致病机制的研究进展[J]. 华西口腔医学杂志, 2019, 37(6): 656-659. |
Wu JY, Li X, Wang CL, et al. Research progress on the pathogenesis of inflammatory external root resorption[J]. West China J Stomatol, 2019, 37(6): 656-659. | |
2 | Barbato-Ferreira DA, SFDS Costa, Gomez RS, et al. DNA Methylation patterns of immune response-related genes in inflammatory external root resorption[J]. Braz Oral Res, 2020, 34: e087. |
3 | Trope M, Yesilsoy C, Koren L, et al. Effect of diffe-rent endodontic treatment protocols on periodontal repair and root resorption of replanted dog teeth[J]. J Endod, 1992, 18(10): 492-496. |
4 | Hinckfuss SE, Messer LB. An evidence-based assessment of the clinical guidelines for replanted avulsed teeth. Part Ⅰ: timing of pulp extirpation[J]. Dent Traumatol, 2009, 25(1): 32-42. |
5 | 汪莉, 尹仕海, 钟素兰, 等. 3种髓腔穿孔修复材料对人牙周膜成纤维细胞毒性的体外研究[J]. 华西口腔医学杂志, 2009, 27(5): 479-482. |
Wang L, Yin SH, Zhong SL, et al. Cytotoxicity eva-luation of three kinds of perforation repair materials on human periodontal ligament fibroblasts in vitro [J]. West China J Stomatol, 2009, 27(5): 479-482. | |
6 | Kim Y, Lee D, Song DN, et al. Biocompatibility and bioactivity of set direct pulp capping materials on human dental pulp stem cells[J]. Materials (Basel), 2020, 13(18): E3925. |
7 | Toia CC, Teixeira FB, Cucco C, et al. Filling ability of three bioceramic root-end filling materials: a micro-computed tomography analysis[J]. Aust Endod J, 2020, 46(3): 424-431. |
8 | 马福军, 王占红. 复合树脂充填材料修复牙体缺损的应用价值及临床评价[J]. 中国组织工程研究与临床康复, 2011, 15(16): 2957-2960. |
Ma FJ, Wang ZH. Clinical value and evaluation of composite resin filling materials in dental defect repair[J]. J Clin Rehabilitative Tissue Eng Res, 2011, 15(16): 2957-2960. | |
9 | Styllou M, Reichl FX, Styllou P, et al. Dental composite components induce DNA-damage and altered nuclear morphology in gingiva fibroblasts[J]. Dent Mater, 2015, 31(11): 1335-1344. |
10 | Yang Y, Reichl FX, Shi JW, et al. Cytotoxicity and DNA double-strand breaks in human gingival fibroblasts exposed to eluates of dental composites[J]. Dent Mater, 2018, 34(2): 201-208. |
11 | . Biological evaluations of medical devices. Part 12. Sample preparation and reference materials [S]. 4th ed. Geneva, Switzerland: IHS, 2012. |
12 | Cao T, Saw TY, Heng BC, et al. Comparison of different test models for the assessment of cytotoxicity of composite resins[J]. J Appl Toxicol, 2005, 25(2): 101-108. |
13 | 汪莉, 钟素兰, 尹仕海. 三种髓腔穿孔修复材料对人牙周膜成纤维细胞黏附及形态影响的体外研究[J]. 牙体牙髓牙周病学杂志, 2015, 25(7): 408-411. |
Wang L, Zhong SL, Yin SH. Effects of three perforation repair materials on the morphology and adhesion of human periodontal ligament fibroblasts: an in vitro study[J]. Chin J Conserv Dent, 2015, 25(7): 408-411. | |
14 | Ching HS, Luddin N, Rahman IA, et al. Expression of odontogenic and osteogenic markers in DPSCs and SHED: a review[J]. Curr Stem Cell Res Ther, 2017, 12(1): 71-79. |
15 | Zhang Q, Zuo HY, Yu ST, et al. RUNX2 co-operates with EGR1 to regulate osteogenic differentiation through Htra1 enhancers[J]. J Cell Physiol, 2020, 235(11): 8601-8612. |
16 | Jiang FS, Shan HJ, Pan CH, et al. ATP6V1H facilitates osteogenic differentiation in MC3T3-E1 cells via Akt/GSK3β signaling pathway[J]. Organogenesis, 2019, 15(2): 43-54. |