Int J Stomatol ›› 2022, Vol. 49 ›› Issue (4): 412-419.doi: 10.7518/gjkq.2022068

• Original Articles • Previous Articles     Next Articles

In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts

Zhang Jingyi1(),Li Danwei1(),Sun Yu2,Lei Yayan1,Liu Tao1,Gong Yu1   

  1. 1.Dept. of Cariology and Endodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650106, China
    2.Comfort Treatment Center, Kunming Blue Orange Stomatological Hospital, Kunming 650228, China
  • Received:2021-11-02 Revised:2022-04-19 Online:2022-07-01 Published:2022-06-28
  • Contact: Danwei Li E-mail:531345553@qq.com;89402424@qq.com
  • Supported by:
    Scientific Research Fund Project of Education Department of Yunnan Province(2018JS234)

Abstract:

Objective To explore a new method for repairing root defects by observing the osteoblast toxicity of composite resin and compomer, as well as their effects on osteogenic differentiation. Methods An experimental model of MC3T3-E1 was established for osteogenesis induction in vitro. Scanning electron microscope (SEM), cell counting kit-8 (CCK-8) detection, apoptosis and cell cycle detection, scratch experiment, alkaline phosphatase (ALP) activity detection, Alizarin red staining, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to compare the biological effects of the two materials on MC3T3-E1 cells. Results The MC3T3-E1 cells adhered to the two kinds of materials well. The composite resin extract showed slightly higher cytotoxicity to MC3T3-E1 but could promote cell migration and upregulate osteocalcin (OCN), osteopontin (OPN), runt-related transcription factor 2 (RUNX2), and collagen 1 (COL-1) mRNA expression. The compomer extract significantly inhibited the expression of osteogenic differentiation-related genes (P<0.05). Conclusion The slight cytotoxicity of the composite resin and compomer did not considerably affect the adhesion, growth, and normal differentiation of osteoblasts; thus, both materials have potential as bone replacement materials.

Key words: composite resin, compomer, osteoblast, cytotoxicity, osteogenic differentiation

CLC Number: 

  • Q 291

TrendMD: 

Tab 1

PCR primer sequences"

名称引物序列
OCN上游GGACCATCTTTCTGCTCACTCTGC
下游TCCTGCTTGGACATGAAGGCTTTG
OPN上游AAACACACAGACTTGAGCATTC
下游TTAGGGTCTAGGACTAGCTTGT
RUNX2上游CCTTCAAGGTTGTAGCCCTC
下游GGAGTAGTTCTCATCATTCCCG
COL-1上游TGAACGTGGTGTACAAAGGTC
下游CCATCTTTACCAGGAGAACCAT

Fig 1

The adhesion of MC3T3-E1 cells on the surface of the composite resin and the compomer SEM"

Fig 2

Effect of different concentration Spectrum composite resin and Dyract XP compomer extracts on MC3T3-E1 proliferation"

Fig 3

Effect of Spectrum composite resin and Dyract XP compomer extracts on the apoptosis rate of MC3T3-E1 cells in 48 hours"

Fig 4

Effect of Spectrum composite resin and Dyract XP compomer extracts on the cell cycle ratio of MC3T3-E1 cells in 48 hours"

Fig 5

Effect of Spectrum composite resin and Dyract XP compomer extracts on the migration ability of MC3T3-E1 cells"

Fig 6

Effect of Spectrum composite resin and Dyract XP compomer extracts on the formation of mineralized nodules in MC3T3-E1 cells in 7 days"

Fig 7

Effect of Spectrum composite resin and Dyract XP compomer extracts on ALP activity of MC3T3-E1 cells"

Fig 8

Effects of Spectrum composite resin and Dyract XP compomer extracts on the secretion of osteogenesis related genes in MC3T3-E1 cells"

1 吴佳益, 李鑫, 汪成林, 等. 炎症性牙根外吸收致病机制的研究进展[J]. 华西口腔医学杂志, 2019, 37(6): 656-659.
Wu JY, Li X, Wang CL, et al. Research progress on the pathogenesis of inflammatory external root resorption[J]. West China J Stomatol, 2019, 37(6): 656-659.
2 Barbato-Ferreira DA, SFDS Costa, Gomez RS, et al. DNA Methylation patterns of immune response-related genes in inflammatory external root resorption[J]. Braz Oral Res, 2020, 34: e087.
3 Trope M, Yesilsoy C, Koren L, et al. Effect of diffe-rent endodontic treatment protocols on periodontal repair and root resorption of replanted dog teeth[J]. J Endod, 1992, 18(10): 492-496.
4 Hinckfuss SE, Messer LB. An evidence-based assessment of the clinical guidelines for replanted avulsed teeth. Part Ⅰ: timing of pulp extirpation[J]. Dent Traumatol, 2009, 25(1): 32-42.
5 汪莉, 尹仕海, 钟素兰, 等. 3种髓腔穿孔修复材料对人牙周膜成纤维细胞毒性的体外研究[J]. 华西口腔医学杂志, 2009, 27(5): 479-482.
Wang L, Yin SH, Zhong SL, et al. Cytotoxicity eva-luation of three kinds of perforation repair materials on human periodontal ligament fibroblasts in vitro [J]. West China J Stomatol, 2009, 27(5): 479-482.
6 Kim Y, Lee D, Song DN, et al. Biocompatibility and bioactivity of set direct pulp capping materials on human dental pulp stem cells[J]. Materials (Basel), 2020, 13(18): E3925.
7 Toia CC, Teixeira FB, Cucco C, et al. Filling ability of three bioceramic root-end filling materials: a micro-computed tomography analysis[J]. Aust Endod J, 2020, 46(3): 424-431.
8 马福军, 王占红. 复合树脂充填材料修复牙体缺损的应用价值及临床评价[J]. 中国组织工程研究与临床康复, 2011, 15(16): 2957-2960.
Ma FJ, Wang ZH. Clinical value and evaluation of composite resin filling materials in dental defect repair[J]. J Clin Rehabilitative Tissue Eng Res, 2011, 15(16): 2957-2960.
9 Styllou M, Reichl FX, Styllou P, et al. Dental composite components induce DNA-damage and altered nuclear morphology in gingiva fibroblasts[J]. Dent Mater, 2015, 31(11): 1335-1344.
10 Yang Y, Reichl FX, Shi JW, et al. Cytotoxicity and DNA double-strand breaks in human gingival fibroblasts exposed to eluates of dental composites[J]. Dent Mater, 2018, 34(2): 201-208.
11 . Biological evaluations of medical devices. Part 12. Sample preparation and reference materials [S]. 4th ed. Geneva, Switzerland: IHS, 2012.
12 Cao T, Saw TY, Heng BC, et al. Comparison of different test models for the assessment of cytotoxicity of composite resins[J]. J Appl Toxicol, 2005, 25(2): 101-108.
13 汪莉, 钟素兰, 尹仕海. 三种髓腔穿孔修复材料对人牙周膜成纤维细胞黏附及形态影响的体外研究[J]. 牙体牙髓牙周病学杂志, 2015, 25(7): 408-411.
Wang L, Zhong SL, Yin SH. Effects of three perforation repair materials on the morphology and adhesion of human periodontal ligament fibroblasts: an in vitro study[J]. Chin J Conserv Dent, 2015, 25(7): 408-411.
14 Ching HS, Luddin N, Rahman IA, et al. Expression of odontogenic and osteogenic markers in DPSCs and SHED: a review[J]. Curr Stem Cell Res Ther, 2017, 12(1): 71-79.
15 Zhang Q, Zuo HY, Yu ST, et al. RUNX2 co-operates with EGR1 to regulate osteogenic differentiation through Htra1 enhancers[J]. J Cell Physiol, 2020, 235(11): 8601-8612.
16 Jiang FS, Shan HJ, Pan CH, et al. ATP6V1H facilitates osteogenic differentiation in MC3T3-E1 cells via Akt/GSK3β signaling pathway[J]. Organogenesis, 2019, 15(2): 43-54.
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Xue Jing, Yang Jing.. Key points of evidence-based practice for the Class Ⅱ cavity composite resin restoration [J]. Int J Stomatol, 2023, 50(4): 375-387.
[3] Wu Sijia,Shu Chang,Wang Yang,Wang Yuan,Deng Shuli,Wang Huiming.. Effect and research progress on root canal infection management of regenerative endodontic procedure in immature permanent teeth [J]. Int J Stomatol, 2023, 50(4): 388-394.
[4] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[5] Wang Luming,Cao Xiao,Wu Linyue,Li Yuncong,Lei Bo,Niu Lin. Effect of Zn-doped bioactive glass nanoparticles on the mechanical properties of modified composite resin [J]. Int J Stomatol, 2022, 49(4): 404-411.
[6] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[7] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[8] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[9] Meng Xiuping,Hou Jianhua,Li Yiran,Sun Mengyao. Research progress on the selection and design of base materials in deep margin elevation [J]. Int J Stomatol, 2021, 48(3): 280-286.
[10] Zhu Junjin,Wang Jian.. Advances in the loading methods of silver nanoparticles on the surface of titanium implants [J]. Int J Stomatol, 2021, 48(3): 334-340.
[11] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[12] Lü Hui,Wang Hua,Sun Wen. T helper cell 17 and periodontitis related osteoimmunology [J]. Int J Stomatol, 2020, 47(6): 661-668.
[13] Sun Jianwei,Lei Lihong,Tan Jingyi,Chen Lili. Regulation of osteoimmunology by MicroRNA 155 and research progress of its possible mechanism in periodontitis [J]. Int J Stomatol, 2020, 47(5): 607-615.
[14] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[15] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .