Int J Stomatol ›› 2020, Vol. 47 ›› Issue (3): 263-269.doi: 10.7518/gjkq.2020033

• Mesenchymal Stem Cell • Previous Articles     Next Articles

Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells

Liu Junqi,Chen Yiyin,Yang Wenbin()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-08-13 Revised:2019-11-29 Online:2020-05-01 Published:2020-05-08
  • Contact: Wenbin Yang E-mail:yangwenbinkq@163.com
  • Supported by:
    Research and Development Foundation of West China Hospital of Stomatology, Sichuan University(RD-02-201907)

Abstract:

RNA N6-methylation of adenosine is the most prevalent epigenetic modification of messenger and noncoding RNAs in eukaryotes and plays an important role in various biological processes. Recent studies demonstrated that RNA N6-methyladenosine has profound effect on bone marrow mesenchymal stem cell differentiation, especially in osteogenic differentiation. In this paper, we review related studies to provide new strategies for follow-up basic research and clinical applications.

Key words: N 6-methyladenosine, RNA modification, osteogenic differentiation, mesenchymal stem cell

CLC Number: 

  • Q254

TrendMD: 
[1] Bianco P, Robey PG, Simmons PJ . Mesenchymal stem cells: revisiting history, concepts, and assays[J]. Cell Stem Cell, 2008,2(4):313-319.
doi: 10.1016/j.stem.2008.03.002 pmid: 18397751
[2] Jing H, Liao L, An YL , et al. Suppression of EZH2 prevents the shift of osteoporotic MSC fate to adi-pocyte and enhances bone formation during osteo-porosis[J]. Mol Ther, 2016,24(2):217-229.
doi: 10.1038/mt.2015.152 pmid: 26307668
[3] Aghebati-Maleki L, Dolati S, Zandi R , et al. Prospect of mesenchymal stem cells in therapy of osteopo-rosis: a review[J]. J Cell Physiol, 2019,234(6):8570-8578.
doi: 10.1002/jcp.27833 pmid: 30488448
[4] Teven CM, Liu X, Hu N , et al. Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation[J]. Stem Cells Int, 2011,2011:201371.
doi: 10.4061/2011/201371 pmid: 21772852
[5] Cao YY, Yang HQ, Jin LY , et al. Genome-wide DNA methylation analysis during osteogenic differentia-tion of human bone marrow mesenchymal stem cells[J]. Stem Cell Int, 2018,2018:1-11.
[6] Wu YS, Zhou CC, Yuan Q . Role of DNA and RNA N6-adenine methylation in regulating stem cell fate[J]. Curr Stem Cell Res Ther, 2018,13(1):31-38.
doi: 10.2174/1574888X12666170621125457 pmid: 28637404
[7] Desrosiers R, Friderici K, Rottman F . Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proc Natl Acad Sci U S A, 1974,71(10):3971-3975.
doi: 10.1073/pnas.71.10.3971 pmid: 4372599
[8] Fu Y, Dominissini D, Rechavi G , et al. Gene expre-ssion regulation mediated through reversible m6A RNA methylation[J]. Nat Rev Genet, 2014,15(5):293-306.
doi: 10.1038/nrg3724 pmid: 24662220
[9] Shi HL, Wei JB, He C . Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers[J]. Mol Cell, 2019,74(4):640-650.
doi: 10.1016/j.molcel.2019.04.025 pmid: 31100245
[10] Wang P, Doxtader KA, Nam Y . Structural basis for cooperative function of Mettl3 and Mettl14 methyl-transferases[J]. Mol Cell, 2016,63(2):306-317.
doi: 10.1016/j.molcel.2016.05.041 pmid: 27373337
[11] Zhou KI, Pan T . Structures of the m6A methyl-transferase complex: two subunits with distinct but coordinated roles[J]. Mol Cell, 2016,63(2):183-185.
doi: 10.1016/j.molcel.2016.07.005 pmid: 27447983
[12] Wang X, Feng J, Xue Y , et al. Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex[J]. Nature, 2016,534(7608):575-578.
doi: 10.1038/nature18298 pmid: 27281194
[13] Wang X, Huang JB, Zou TT , et al. Human m6A writers: two subunits, 2 roles[J]. RNA Biol, 2017,14(3):300-304.
doi: 10.1080/15476286.2017.1282025 pmid: 28121234
[14] Liu JZ, Yue YN, Han DL , et al. A METTL3-METTL- 14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014,10(2):93-95.
doi: 10.1038/nchembio.1432 pmid: 24316715
[15] Ping XL, Sun BF, Wang L , et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladeno-sine methyltransferase[J]. Cell Res, 2014,24(2):177-189.
doi: 10.1038/cr.2014.3 pmid: 24407421
[16] Gerken T, Girard CA, Tung YC , et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-de-pendent nucleic acid demethylase[J]. Science, 2007,318(5855):1469-1472.
doi: 10.1126/science.1151710 pmid: 17991826
[17] Gao X, Shin YH, Li M , et al. The fat mass and obe-sity associated gene FTO functions in the brain to regulate postnatal growth in mice[J]. PLoS One, 2010,5(11):e14005.
doi: 10.1371/journal.pone.0014005 pmid: 21103374
[18] Zhao X, Yang Y, Sun BF , et al. FTO-dependent de-methylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Res, 2014,24(12):1403-1419.
doi: 10.1038/cr.2014.151
[19] Zhang MZ, Zhang Y, Ma J , et al. The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation[J]. PLoS One, 2015,10(7):e0133788.
doi: 10.1371/journal.pone.0133788 pmid: 26218273
[20] Zheng GQ, Dahl JA, Niu YM , et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013,49(1):18-29.
doi: 10.1016/j.molcel.2012.10.015 pmid: 23177736
[21] Du H, Zhao Y, He JQ , et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex[J]. Nat Com-mun, 2016,7:12626.
doi: 10.1038/ncomms12626 pmid: 27558897
[22] Berlivet S, Scutenaire J, Deragon JM , et al. Readers of the m6A epitranscriptomic code[J]. Biochim Biophys Acta Gene Regul Mech, 2019,1862(3):329-342.
doi: 10.1016/j.bbagrm.2018.12.008 pmid: 30660758
[23] Wang X, Lu ZK, Gomez A , et al. N6-methylade-nosine-dependent regulation of messenger RNA stability[J]. Nature, 2014,505(7481):117-120.
doi: 10.1038/nature12730 pmid: 24284625
[24] Xiao W, Adhikari S, Dahal U , et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing[J]. Mol Cell, 2016,61(4):507-519.
doi: 10.1016/j.molcel.2016.01.012 pmid: 26876937
[25] Wang X, Zhao BS, Roundtree IA , et al. N6-me-thyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015,161(6):1388-1399.
doi: 10.1016/j.cell.2015.05.014 pmid: 26046440
[26] Schumann U, Shafik A, Preiss T . METTL3 gains R/W access to the epitranscriptome[J]. Mol Cell, 2016,62(3):323-324.
doi: 10.1016/j.molcel.2016.04.024 pmid: 27153530
[27] Ke SD, Alemu EA, Mertens C , et al. A majority of m6A residues are in the last exons, allowing the po-tential for 3’ UTR regulation[J]. Genes Dev, 2015,29(19):2037-2053.
doi: 10.1101/gad.269415.115 pmid: 26404942
[28] Meyer KD, Saletore Y, Zumbo P , et al. Compre-hensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons[J]. Cell, 2012,149(7):1635-1646.
doi: 10.1016/j.cell.2012.05.003 pmid: 22608085
[29] Meyer KD, Jaffrey SR . Rethinking m6A readers, writers, and erasers[J]. Annu Rev Cell Dev Biol, 2017,33:319-342.
doi: 10.1146/annurev-cellbio-100616-060758 pmid: 28759256
[30] Wu R, Li A, Sun BF , et al. A novel m6A reader Prrc2a controls oligodendroglial specification and myelina-tion [J]. Cell Res, 2019,29(1):23-41.
doi: 10.1038/s41422-018-0113-8 pmid: 30514900
[31] Ji PF, Wang X, Xie NN , et al. N6-methyladenosine in RNA and DNA: an epitranscriptomic and epige-netic player implicated in determination of stem cell fate[J]. Stem Cells Int, 2018,2018:3256524.
doi: 10.1155/2018/3256524 pmid: 30405719
[32] Cui Q, Shi HL, Ye P , et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells[J]. Cell Rep, 2017,18(11):2622-2634.
doi: 10.1016/j.celrep.2017.02.059 pmid: 28297667
[33] Lee H, Bao SY, Qian YZ , et al. Stage-specific re-quirement for Mettl3-dependent m6A mRNA me-thylation during haematopoietic stem cell differen-tiation[J]. Nat Cell Biol, 2019,21(6):700-709.
doi: 10.1038/s41556-019-0318-1 pmid: 31061465
[34] Yang DD, Qiao J, Wang GY , et al. N6-Methyladeno-sine modification of lincRNA 1281 is critically re-quired for mESC differentiation potential[J]. Nucleic Acids Res, 2018,46(8):3906-3920.
doi: 10.1093/nar/gky130 pmid: 29529255
[35] Geula S, Moshitch-Moshkovitz S, Dominissini D , et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation[J]. Science, 2015,347(6225):1002-1006.
doi: 10.1126/science.1261417 pmid: 25569111
[36] Zhao BS, He C . Fate by RNA methylation: m6A steers stem cell pluripotency[J]. Genome Biol, 2015,16:43.
doi: 10.1186/s13059-015-0609-1 pmid: 25723450
[37] Zhang CX, Chen YS, Sun BF , et al. m6A modulates haematopoietic stem and progenitor cell specification[J]. Nature, 2017,549(7671):273-276.
doi: 10.1038/nature23883 pmid: 28869969
[38] Weng HY, Huang HL, Wu HZ , et al. METTL14 inhi-bits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A mo-dification[J]. Cell Stem Cell, 2018, 22(2): 191-205.e9.
doi: 10.1016/j.stem.2017.11.016 pmid: 29290617
[39] Yoon KJ, Ringeling FR, Vissers C , et al. Temporal control of mammalian cortical neurogenesis by m6A methylation[J]. Cell, 2017, 171(4): 877-889.e17.
doi: 10.1016/j.cell.2017.09.003 pmid: 28965759
[40] Li LP, Zang LQ, Zhang FR , et al. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis[J]. Hum Mol Genet, 2017,26(13):2398-2411.
doi: 10.1093/hmg/ddx128 pmid: 28398475
[41] Wang Y, Li Y, Yue MH , et al. N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications[J]. Nat Neurosci, 2018,21(2):195-206.
doi: 10.1038/s41593-017-0057-1 pmid: 29335608
[42] Chen JC, Zhang YC, Huang CM , et al. m6A regulates neurogenesis and neuronal development by modula-ting histone methyltransferase Ezh2[J]. Genomics Proteomics Bioinformatics, 2019,17(2):154-168.
doi: 10.1016/j.gpb.2018.12.007 pmid: 31154015
[43] Wu YS, Xie L, Wang MY , et al. Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis[J]. Nat Commun, 2018,9(1):4772.
doi: 10.1038/s41467-018-06898-4 pmid: 30429466
[44] Tian C, Huang YL, Li QM , et al. Mettl3 regulates osteogenic differentiation and alternative splicing of vegfa in bone marrow mesenchymal stem cells[J]. Int J Mol Sci, 2019,20(3):E551.
doi: 10.3390/ijms20030551 pmid: 30696066
[45] Jüppner H, Abou-Samra AB, Freeman M , et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide[J]. Science, 1991,254(5034):1024-1026.
doi: 10.1126/science.1658941 pmid: 1658941
[46] Abou-Samra AB, Jüppner H, Force T , et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor sti-mulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium[J]. Proc Natl Acad Sci U S A, 1992,89(7):2732-2736.
doi: 10.1073/pnas.89.7.2732 pmid: 1313566
[47] Balani DH, Ono N, Kronenberg HM . Parathyroid hormone regulates fates of murine osteoblast pre-cursors in vivo[J]. J Clin Invest, 2017,127(9):3327-3338.
doi: 10.1172/JCI91699 pmid: 28758904
[48] Rickard DJ, Wang FL, Rodriguez-Rojas AM , et al. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte dif-ferentiation in human bone marrow stromal cells[J]. Bone, 2006,39(6):1361-1372.
doi: 10.1016/j.bone.2006.06.010 pmid: 16904389
[49] Shen WC, Lai YC, Li LH , et al. Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis[J]. Nat Commun, 2019,10(1):2226.
doi: 10.1038/s41467-019-10197-x pmid: 31110221
[50] Luo GM, Xu B, Huang YL . Icariside Ⅱ promotes the osteogenic differentiation of canine bone marrow mesenchymal stem cells via the PI3K/AKT/mTOR/S6K1 signaling pathways[J]. Am J Transl Res, 2017,9(5):2077-2087.
[51] Hui SY, Yang Y, Li J , et al. Differential miRNAs profile and bioinformatics analyses in bone marrow mesenchymal stem cells from adolescent idiopathic scoliosis patients[J]. Spine J, 2019,19(9):1584-1596.
doi: 10.1016/j.spinee.2019.05.003 pmid: 31100472
[52] Yao XD, Jing XZ, Guo JC , et al. Icariin protects bone marrow mesenchymal stem cells against iron overload induced dysfunction through mitochondrial fusion and fission, PI3K/AKT/mTOR and MAPK pathways[J]. Front Pharmacol, 2019,10:163.
doi: 10.3389/fphar.2019.00163 pmid: 30873034
[53] Lin H, Shabbir A, Molnar M , et al. Adenoviral ex-pression of vascular endothelial growth factor splice variants differentially regulate bone marrow-derived mesenchymal stem cells[J]. J Cell Physiol, 2008,216(2):458-468.
doi: 10.1002/jcp.21414 pmid: 18288639
[54] Li R, Nauth A, Li C , et al. Expression of VEGF gene isoforms in a rat segmental bone defect model treated with EPCs[J]. J Orthop Trauma, 2012,26(12):689-692.
doi: 10.1097/BOT.0b013e318266eb7e pmid: 22932749
[55] Carmeliet P, Ng YS, Nuyens D , et al. Impaired myo-cardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188[J]. Nat Med, 1999,5(5):495-502.
doi: 10.1038/8379 pmid: 10229225
[56] Shen GS, Zhou HB, Zhang H , et al. The GDF11-FTO-PPARγ axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis[J]. Biochim Biophys Acta Mol Basis Dis, 2018,1864(12):3644-3654.
doi: 10.1016/j.bbadis.2018.09.015 pmid: 30279140
[57] Liu WQ, Zhou LY, Zhou CC , et al. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation[J]. Nat Commun, 2016,7:12794.
doi: 10.1038/ncomms12794 pmid: 27653144
[58] Takada I, Kouzmenko AP, Kato S . Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis[J]. Nat Rev Rheumatol, 2009,5(8):442-447.
doi: 10.1038/nrrheum.2009.137 pmid: 19581903
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[3] Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42.
[4] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[5] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[6] Shi Peilei,Yu Chenhao,Xie Xudong,Wu Yafei,Wang Jun. Research progress on the application of dental-derived mesenchymal stem cells in periodontal defect repair [J]. Int J Stomatol, 2021, 48(6): 690-695.
[7] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[8] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[9] Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569.
[10] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
[11] Chen Ye, Zhou Feng, Wu Qionghui, Che Huiling, Li Jiaxuan, Shen Jiaqi, Luo En. Effect of adiponectin on bone marrow mesenchymal stem cells and its regulatory mechanisms [J]. Int J Stomatol, 2021, 48(1): 58-63.
[12] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[13] Lü Hui,Wang Hua,Sun Wen. T helper cell 17 and periodontitis related osteoimmunology [J]. Int J Stomatol, 2020, 47(6): 661-668.
[14] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[15] Zhu Mingjing,Zhang Qingbin. Comparative review of growth factors inducing 3D in vitro cartilage formation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 270-277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .