Int J Stomatol ›› 2023, Vol. 50 ›› Issue (1): 37-42.doi: 10.7518/gjkq.2023009

• Periodontitis • Previous Articles     Next Articles

Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues

Li Peitong(),Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2022-03-24 Revised:2022-07-13 Online:2023-01-01 Published:2023-01-09
  • Contact: Jun. Wang;
  • Supported by:
    National Natural Science Foundation of China General Project(82071127);Si-chuan Key Research and Development Program(23ZDYF1722);Research Funding Support Project for Talent Team Construction of West China Hospital of Stomatology, Sichuan University(RCDWJS2020-12)


The Hedgehog (Hh) signaling pathway plays a crucial role in tissue development and organogenesis. Gli1 is one of the key transcription factors in the Hh signaling pathway that has been identified to be a reliable marker for mesenchymal stem cells (MSCs) in vivo. Gli1+ MSCs possess self-renewal ability and multidirectional differentiation potential. In teeth and periodontal tissues, Gli1+ MSCs can differentiate into a variety of cells, including odontoblasts, cementoblasts, fibroblasts, and osteoblasts, that contribute to tissue growth and homeostasis. In this review, we aim to summarize the current progress in the research on the distribution and function of Gli1+ MSCs in teeth and periodontal tissues and provide new insights into regenerative therapy for teeth and periodontal tissues.

Key words: Gli1, mesenchymal stem cells, growth and development, homeostasis, lineage tracing

CLC Number: 

  • R 781


Fig 1

The distribution and differentiation of Gli1+MSCs in teeth and periodontal tissues"

1 Dominici M, le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
2 Mabuchi Y, Okawara C, Méndez-Ferrer S, et al. Cellular heterogeneity of mesenchymal stem/stromal ce-lls in the bone marrow[J]. Front Cell Dev Biol, 2021, 9: 689366.
3 Wilson A, Webster A, Genever P. Nomenclature and heterogeneity: consequences for the use of mesenchymal stem cells in regenerative medicine[J]. Regen Med, 2019, 14(6): 595-611.
4 Hosoya A, Shalehin N, Takebe H, et al. Sonic hedgehog signaling and tooth development[J]. Int J Mol Sci, 2020, 21(5): E1587.
5 Men Y, Wang YH, Yi YT, et al. Gli1+ periodontium stem cells are regulated by osteocytes and occlusal force[J]. Dev Cell, 2020, 54(5): 639-654.e6.
6 Kan C, Chen LJ, Hu YY, et al. Gli1-labeled adult mesenchymal stem/progenitor cells and hedgehog signaling contribute to endochondral heterotopic ossification[J]. Bone, 2018, 109: 71-79.
7 Franchi F, Peterson KM, Quandt K, et al. Impaired hedgehog-Gli1 pathway activity underlies the vascular phenotype of polycystic kidney disease[J]. Hypertension, 2020, 76(6): 1889-1897.
8 He J, Zuo QZ, Hu B, et al. A novel, liver-specific long noncoding RNA LINC01093 suppresses HCC progression by interaction with IGF2BP1 to facilitate decay of GLI1 mRNA[J]. Cancer Lett, 2019, 450: 98-109.
9 Cassandras M, Wang CQ, Kathiriya J, et al. Gli1+ mesenchymal stromal cells form a pathological niche to promote airway progenitor metaplasia in the fib-rotic lung[J]. Nat Cell Biol, 2020, 22(11): 1295-1306.
10 Guan WW, Zhang J, Chen J. Connection of GLI1 variants to congenital heart disease susceptibility: a case-control study[J]. Medicine (Baltimore), 2020, 99(27): e19868.
11 Kramann R, Goettsch C, Wongboonsin J, et al. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease[J]. Cell Stem Cell, 2016, 19(5): 628-642.
12 Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila[J]. Nature, 1980, 287(5785): 795-801.
13 Rimkus TK, Carpenter RL, Qasem S, et al. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors[J]. Cancers (Basel), 2016, 8(2): E22.
14 Pak E, Segal RA. Hedgehog signal transduction: key players, oncogenic drivers, and cancer therapy[J]. Dev Cell, 2016, 38(4): 333-344.
15 Pietrobono S, Gagliardi S, Stecca B. Non-canonical hedgehog signaling pathway in cancer: activation of GLI transcription factors beyond smoothened[J]. Front Genet, 2019, 10: 556.
16 Jing D, Li CY, Yao K, et al. The vital role of Gli1+ mesenchymal stem cells in tissue development and homeostasis[J]. J Cell Physiol, 2021, 236(9): 6077-6089.
17 Taipale J, Cooper MK, Maiti T, et al. Patched acts catalytically to suppress the activity of smoothened[J]. Nature, 2002, 418(6900): 892-897.
18 Sabol M, Trnski D, Musani V, et al. Role of GLI transcription factors in pathogenesis and their potential as new therapeutic targets[J]. Int J Mol Sci, 2018, 19(9): E2562.
19 Janečková E, Feng JF, Li JY, et al. Dynamic activation of Wnt, Fgf, and Hh signaling during soft pa-late development[J]. PLoS One, 2019, 14(10): e0223879.
20 Skoda AM, Simovic D, Karin V, et al. The role of the Hedgehog signaling pathway in cancer: a comprehensive review[J]. Bosn J Basic Med Sci, 2018, 18(1): 8-20.
21 王韵, 谢旭东, 许春梅, 等. Gli1阳性细胞在牙周组织发育中的时空分布特点及功能研究[J]. 华西口腔医学杂志, 2020, 38(2): 128-132.
Wang Y, Xie XD, Xu CM, et al. Temporal and spatial distribution of Gli1+ cells and their function during periodontal development[J]. West China J Stomatol, 2020, 38(2): 128-132.
22 Warshawsky H, Smith CE. Morphological classification of rat incisor ameloblasts[J]. Anat Rec, 1974, 179(4): 423-446.
23 Seidel K, Marangoni P, Tang C, et al. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis[J]. Elife, 2017, 6: e24712.
24 Seidel K, Ahn CP, Lyons D, et al. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor[J]. Development, 2010, 137(22): 3753-3761.
25 Gerlach JC, Over P, Turner ME, et al. Perivascular mesenchymal progenitors in human fetal and adult liver[J]. Stem Cells Dev, 2012, 21(18): 3258-3269.
26 Zhao H, Feng JF, Seidel K, et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor[J]. Cell Stem Cell, 2018, 23(1): 147.
27 Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo[J]. Dev Biol, 1995, 172(1): 126-138.
28 Cobourne MT, Miletich I, Sharpe PT. Restriction of sonic hedgehog signalling during early tooth development[J]. Development, 2004, 131(12): 2875-2885.
29 Dassule HR, Lewis P, Bei M, et al. Sonic hedgehog regulates growth and morphogenesis of the tooth[J]. Development, 2000, 127(22): 4775-4785.
30 Chen S, Jing JJ, Yuan Y, et al. Runx2+ niche cells maintain incisor mesenchymal tissue homeostasis th-rough IGF signaling[J]. Cell Rep, 2020, 32(6): 108007.
31 Shi C, Yuan Y, Guo Y, et al. BMP signaling in regulating mesenchymal stem cells in incisor homeostasis[J]. J Dent Res, 2019, 98(8): 904-911.
32 Imhof T, Balic A, Heilig J, et al. Pivotal role of tenascin-W (-N) in postnatal incisor growth and periodontal ligament remodeling[J]. Front Immunol, 2020, 11: 608223.
33 Sharpe PT. Dental mesenchymal stem cells[J]. Development, 2016, 143(13): 2273-2280.
34 Pang YW, Feng JF, Daltoe F, et al. Perivascular stem cells at the tip of mouse incisors regulate tissue regeneration[J]. J Bone Miner Res, 2016, 31(3): 514-523.
35 Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals[J]. Development, 2012, 139(19): 3487-3497.
36 Ishikawa Y, Nakatomi M, Ida-Yonemochi H, et al. Quiescent adult stem cells in murine teeth are regulated by Shh signaling[J]. Cell Tissue Res, 2017, 369(3): 497-512.
37 Li C, Jing Y, Wang K, et al. Dentinal mineralization is not limited in the mineralization front but occurs along with the entire odontoblast process[J]. Int J Biol Sci, 2018, 14(7): 693-704.
38 Liu Y, Feng JF, Li JY, et al. An Nfic-hedgehog signaling cascade regulates tooth root development[J]. Development, 2015, 142(19): 3374-3382.
39 Hardcastle Z, Mo R, Hui CC, et al. The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants[J]. Development, 1998, 125(15): 2803-2811.
40 Feng JF, Jing JJ, Li JY, et al. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice[J]. Development, 2017, 144(14): 2560-2569.
41 Xie X, Xu C, Zhao H, et al. A biphasic feature of Gli1+-mesenchymal progenitors during cementogenesis that is positively controlled by wnt/β-catenin signaling[J]. J Dent Res, 2021, 100(11): 1289-1298.
42 Liu AQ, Zhang LS, Chen J, et al. Mechanosensing by Gli1+ cells contributes to the orthodontic force-induced bone remodelling[J]. Cell Prolif, 2020, 53(5): e12810.
43 Panciera T, Azzolin L, Cordenonsi M, et al. Mechanobiology of YAP and TAZ in physiology and disease[J]. Nat Rev Mol Cell Biol, 2017, 18(12): 758-770.
44 Maurer M, Lammerding J. The driving force: nuclear mechanotransduction in cellular function, fate, and di-sease[J]. Annu Rev Biomed Eng, 2019, 21: 443-468.
45 Qi J, Zhou YL, Jiao ZY, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway[J]. Cell Physiol Biochem, 2017, 42(6): 2242-2254.
46 Kan C, Ding N, Yang JZ, et al. BMP-dependent, injury-induced stem cell niche as a mechanism of heterotopic ossification[J]. Stem Cell Res Ther, 2019, 10(1): 14.
47 Ji QJ, Hou JW, Yong XQ, et al. Targeted dual small interfering ribonucleic acid delivery via non-viral polymeric vectors for pulmonary fibrosis therapy[J]. Adv Mater, 2021, 33(12): e2007798.
[1] Zhang Yuning,Zeng Ni,Zhang Bei,Shi Bing,Zheng Qian.. A preliminary study of the effect of posterior pharyngeal flap surgery on the maxillofacial growth of patients after palatoplasty [J]. Int J Stomatol, 2023, 50(1): 66-71.
[2] Zhang Shan,Ge Xiaolei,Li Jie,Xie Xinyu,Chang Weiwei,Ma Wensheng.. Meta-analysis of the long-term effect of maxillary protraction on jaw growth and development [J]. Int J Stomatol, 2022, 49(5): 548-555.
[3] Liu Jiacheng,Meng Zhaosong,Li Hongjie,Sui Lei. The role of follistatin in oral and maxillofacial development and its therapeutic application prospect [J]. Int J Stomatol, 2021, 48(5): 556-562.
[4] Ye Guanchen,Yu Xiaowen,Zhao Feiya,Yu Mengfei,Wang Baixiang,Wang Huiming. Assessment and management of maxillary sinus diseases for sinus lift [J]. Int J Stomatol, 2021, 48(4): 468-474.
[5] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
[6] Chen Ye, Zhou Feng, Wu Qionghui, Che Huiling, Li Jiaxuan, Shen Jiaqi, Luo En. Effect of adiponectin on bone marrow mesenchymal stem cells and its regulatory mechanisms [J]. Int J Stomatol, 2021, 48(1): 58-63.
[7] Jin Zuolin. Craniofacial growth and development in early orthodontic and orthopedic treatment [J]. Int J Stomatol, 2021, 48(1): 7-11.
[8] Liu Zhenzhen, Fang Jiao, Zhao Jinghui, Zou Jingting, Xiang Xingchen, Wang Jia, Zhou Yanmin. A review on recent developments in pluripotency of gingiva-derived mesenchymal stem cells [J]. Inter J Stomatol, 2018, 45(1): 55-58.
[9] Cao Congcong, Li Jingtao, Zheng Qian. Research progress on craniofacial growth and development of patients with submucous cleft palate [J]. Inter J Stomatol, 2017, 44(4): 390-392.
[10] Liu Xiyang, Chen Zhenqi. Research progress on cranial base morphology of patients with cleft lip and palate [J]. Inter J Stomatol, 2015, 42(5): 525-527.
[11] Zhang Hong1, Zhang Zhiguang2.. Research progress on pericytes on multipotency [J]. Inter J Stomatol, 2013, 40(4): 529-532.
[12] Zhang Yi 1,Yu Weixian 2,Hu Min 1 . .
The effect of erythropoietin producing hepatocyte kinases-erythropoietin producing hepatocyte kinases receptor interacting protein bidirectional signal transduction on bone homeostasis
[J]. Inter J Stomatol, 2013, 40(2): 229-232.
[13] ZHANG Qiang1, CHEN Yang-xi2.. Study methods of the dental-maxillo-facial growth and development [J]. Inter J Stomatol, 2011, 38(1): 79-82.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .