Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (1): 55-58.doi: 10.7518/gjkq.2018.01.011

• Original Articles • Previous Articles     Next Articles

A review on recent developments in pluripotency of gingiva-derived mesenchymal stem cells

Liu Zhenzhen, Fang Jiao, Zhao Jinghui, Zou Jingting, Xiang Xingchen, Wang Jia, Zhou Yanmin   

  1. Dept. of Implantology, Hospital of Stomatology, Jilin University Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China; Dept. of Implantology, Hospital of Stomatology, Jilin UniversityJilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
  • Received:2017-05-28 Revised:2017-09-14 Published:2018-01-15
  • Supported by:
    This study was supported by Specialized Research Fund for the Doctoral Program of Higher Education of China (20120061110077), National Natural Science Foundation of China (81200809), Science and Technology Research Project of Jilin Provincial Education Department in 12th Five-Year ([2015]532) and Project Supported by Graduate Innovation Fund of Jilin University (2017014, 2017063).

Abstract: Mesenchymal stem cells (MSCs) which can be isolated from multiple tissue, have two specific characteristics: self-renewal and multi- or pluripotency. Recent evidence has shown that MSCs also located in gingiva, then be named as gingiva-derived mesenchymal stem cells (GMSCs). GMSCs represent a unique population of MSCs that can be easily isolated and obtained. In addition to maintaining a normal karyotype and telomerase activity in long-term cultures, GMSCs can display a stable phenotype and rapidly proliferate in vitro. Therefore, GMSCs are increasingly become the sources of stem cells for tissue engineering and regenerative medicine research. This review described the research progress of GMSCs’ separation and identification, biological characteristics and differentiation ability and so on.

Key words: mesenchymal stem cells, gingiva-derived mesenchymal stem cells, differentiation, tissue regeneration

CLC Number: 

  • Q2

TrendMD: 
[1]Boink MA, van den Broek LJ, Roffel S, et al. Diffe-rent wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells[J]. Wound Repair Regen, 2016, 24(1):100-109.
[2]Abuzakouk M, Feighery C, O’Farrelly C. Collagenase and dispase enzymes disrupt lymphocyte surface molecules[J]. J Immunol Methods, 1996, 194(2): 211-216.
[3]Tomar GB, Srivastava RK, Gupta N, et al. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine[J]. Biochem Biophys Res Commun, 2010, 393(3):377-383.
[4]Jin SH, Lee JE, Yun JH, et al. Isolation and charac-terization of human mesenchymal stem cells from gingival connective tissue[J]. J Periodontal Res, 2015, 50(4):461-467.
[5]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stro-mal cells. The International Society for Cellular The-rapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
[6]Zhang Q, Shi S, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immuno-modulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis[J]. J Immunol, 2009, 183(12):7787-7798.
[7]Wada N, Gronthos S, Bartold PM. Immunomodula-tory effects of stem cells[J]. Periodontol 2000, 2013, 63(1):198-216.
[8]Xu X, Chen C, Akiyama K, et al. Gingivae contain neural-crest- and mesoderm-derived mesenchymal stem cells[J]. J Dent Res, 2013, 92(9):825-832.
[9]Wang F, Yu M, Yan X, et al. Gingiva-derived mesen-chymal stem cell-mediated therapeutic approach for bone tissue regeneration[J]. Stem Cells Dev, 2011, 20(12):2093-2102.
[10]Ge S, Mrozik KM, Menicanin D, et al. Isolation and characterization of mesenchymal stem cell-like cells from healthy and inflamed gingival tissue: potential use for clinical therapy[J]. Regen Med, 2012, 7(6): 819-832.
[11]Moshaverinia A, Xu X, Chen C, et al. Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration [J]. Biomaterials, 2014, 35(9):2642-2650.
[12]Ansari S, Chen C, Xu X, et al. Muscle tissue enginee-ring using gingival mesenchymal stem cells encapsu-lated in alginate hydrogels containing multiple growth factors[J]. Ann Biomed Eng, 2016, 44(6):1908-1920.
[13]Fawzy El-Sayed KM, Paris S, Becker ST, et al. Perio-dontal regeneration employing gingival margin-deri-ved stem/progenitor cells: an animal study[J]. J Clin Periodontol, 2012, 39(9):861-870.
[14]Chavez-Munoz C, Nguyen KT, Xu W, et al. Transdi-fferentiation of adipose-derived stem cells into kera-tinocyte-like cells: engineering a stratified epidermis [J]. PLoS One, 2013, 8(12):e80587.
[15]Mahdavishahri N, Moghatam Matin M, Fereidoni M, et al. In vitro assay of human gingival scaffold in differentiation of rat’s bone marrow mesenchymal stem cells to keratinocystes[J]. Iran J Basic Med Sci, 2012, 15(6):1185-1190.
[16]Zhang QZ, Su WR, Shi SH, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing[J]. Stem Cells, 2010, 28(10):1856-1868.
[17]Su WR, Zhang QZ, Shi SH, et al. Human gingiva-derived mesenchymal stromal cells attenuate contact hypersensitivity via prostaglandin E2-dependent mechanisms[J]. Stem Cells, 2011, 29(11):1849-1860.
[18]Chen M, Su W, Lin X, et al. Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppres-sion of Th1 and Th17 cells and enhancement of re-gulatory T cell differentiation[J]. Arthritis Rheum, 2013, 65(5):1181-1193.
[19]Yang H, Gao LN, An Y, et al. Comparison of mesen-chymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions [J]. Biomaterials, 2013, 34(29):7033-7047.
[20]Li N, Liu N, Zhou J, et al. Inflammatory environment induces gingival tissue-specific mesenchymal stem cells to differentiate towards a pro-fibrotic pheno-type[J]. Biol Cell, 2013, 105(6):261-275.
[21]Van Pham P, Tran NY, Phan NL, et al. Vitamin C sti-mulates human gingival stem cell proliferation and expression of pluripotent markers[J]. In Vitro Cell Dev Biol Anim, 2016, 52(2):218-227.
[22]Coimbra LS, Steffens JP, Alsadun S, et al. Clopidogrel enhances mesenchymal stem cell proliferation follo-wing periodontitis[J]. J Dent Res, 2015, 94(12):1691-1697.
[23]Jiang CM, Liu J, Zhao JY, et al. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells[J]. J Dent Res, 2015, 94(1):69-77.
[24]Lee SI, Yeo SI, Kim BB, et al. Formation of size-controllable spheroids using gingiva-derived stem cells and concave microwells: morphology and via-bility tests[J]. Biomed Rep, 2016, 4(1):97-101.
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Wang Jiaxi,Mingyue Lü,Yuan Quan. Research progress on sticky bone in oral tissue regeneration [J]. Int J Stomatol, 2023, 50(5): 594-602.
[3] Fan Lin,Sun Jiang.. Application of microneedles in stomatology [J]. Int J Stomatol, 2023, 50(4): 472-478.
[4] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[5] Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42.
[6] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[7] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[8] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[9] Li Pei,Lin Ling,Zhao Wei.. Research progress on the stem cells from human exfoliated deciduous teeth in the regeneration and repair of oral tissue [J]. Int J Stomatol, 2022, 49(4): 483-488.
[10] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[11] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
[12] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[13] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[14] Zhao Wenjun,Chen Yu. Research progress on periodontal functional gradient membrane for guided tissue/bone regeneration [J]. Int J Stomatol, 2021, 48(4): 391-397.
[15] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .