Int J Stomatol ›› 2021, Vol. 48 ›› Issue (6): 737-744.doi: 10.7518/gjkq.2021088

• Reviews • Previous Articles    

Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells

Guo Yuting(),Lü Xuechao()   

  1. College of Stomatology, Harbin Medical University, Dept. of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
  • Received:2020-12-28 Revised:2021-05-25 Online:2021-11-01 Published:2021-10-28
  • Contact: Xuechao Lü;
  • Supported by:
    Postdoctoral Research Project in Heilongjiang Province(LBH-Z15172)


Bone defects are a common complication of oral and maxillofacial diseases. Cleft lip and palate and chro-nic periodontitis can cause bone defects and affect the function and beauty of the face. Dental pulp stem cells (DPSCs) have good biological characteristics, such as multidirectional differentiation potential and self-renewal ability. Thus, they can provide a new idea for the repair of bone defects and have an important clinical-transformation value. This study found that the osteogenic differentiation of DPSCs was regulated by various factors. One of the most useful methods of inducing osteogenic differentiation of cells was by adding drugs to the culture system of DPSCs. On one hand, drugs can induce the osteogenic differentiation of DPSCs in vitro; on the other hand, drugs can be used in combination with DPSCs in the clinic. Clarifying which drugs can promote the osteogenic differentiation of DPSCs has significance for their transformations and applications. This thesis reviews the research progress of drugs associated with the regulation of osteogenic differentiation of DPSCs to provide a new strategy for research on DPSCs in regenerative medicine and clinical applications.

Key words: dental pulp stem cell, drug, osteogenic differentiation, bone defect

CLC Number: 

  • Q254

[1] Haugen HJ, Lyngstadaas SP, Rossi F, et al. Bone grafts: which is the ideal biomaterial[J]. J Clin Perio-dontol, 2019, 46(Suppl 21):92-102.
[2] Zhai QM, Dong ZW, Wang W, et al. Dental stem cell and dental tissue regeneration[J]. Front Med, 2019, 13(2):152-159.
doi: 10.1007/s11684-018-0628-x
[3] Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci U S A, 2000, 97(25):13625-13630.
pmid: 11087820
[4] Yamada Y, Nakamura-Yamada S, Kusano K, et al. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: a concise review[J]. Int J Mol Sci, 2019, 20(5):1132.
doi: 10.3390/ijms20051132
[5] Westin CB, Trinca RB, Zuliani C, et al. Differentiation of dental pulp stem cells into chondrocytes upon culture on porous chitosan-xanthan scaffolds in the presence of kartogenin[J]. Mater Sci Eng C Mater Biol Appl, 2017, 80:594-602.
doi: 10.1016/j.msec.2017.07.005
[6] Sanen K, Martens W, Georgiou M, et al. Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair[J]. J Tissue Eng Regen Med, 2017, 11(12):3362-3372.
doi: 10.1002/term.2249
[7] Song M, Lee JH, Bae J, et al. Human dental pulp stem cells are more effective than human bone marrow-derived mesenchymal stem cells in cerebral is-chemic injury[J]. Cell Transplant, 2017, 26(6):1001-1016.
doi: 10.3727/096368916X694391
[8] Bakopoulou A, Georgopoulou Α, Grivas I, et al. Dental pulp stem cells in chitosan/gelatin scaffolds for enhanced orofacial bone regeneration[J]. Dent Mater, 2019, 35(2):310-327.
doi: S0109-5641(18)30550-5 pmid: 30527589
[9] 仵韩, 木合塔尔·霍加, 古扎丽努尔·阿巴拜克力 . 转化生长因子-β3对牙髓干细胞成骨向分化的作用[J]. 临床口腔医学杂志, 2017, 33(10):596-599.
Wu H, Muhetaer H, Guzhalinuer A. Effects of TGF-β3 on osteogenic differentiation of rabbit DPSCs[J]. J Clin Stomatol, 2017, 33(10):596-599.
[10] 王腾, 木合塔尔·霍加, 李军. 转化生长因子β3联合牙髓干细胞在种植体骨结合中作用的实验研究[J]. 中华口腔医学杂志, 2017, 52(6):367-373.
Wang T, Muhetaer H, Li J. Experimental study of transforming growth factor-β3 combined with dental pulp stem cells in promoting the implant’s osseointe-gration[J]. Chin J Stomatol, 2017, 52(6):367-373.
[11] Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine[J]. Cytotherapy, 2018, 20(4):479-498.
doi: 10.1016/j.jcyt.2017.12.011
[12] 蔡洪桢, 贺慧霞, 王飞翔, 等. 人牙周膜干细胞与人牙髓干细胞的表型及生长特性比较[J]. 中华老年口腔医学杂志, 2017, 15(2):91-96.
Cai HZ, He HX, Wang FX, et al. The periodontal ligament stem cells and biological characteristics of human dental pulp stem cells and phenotype[J]. Chin J Geriatr Dent March, 2017, 15(2):91-96.
[13] Mortada I, Mortada R, Al Bazzal M. Dental pulp stem cells and neurogenesis[J]. Adv Exp Med Biol, 2018, 1083:63-75.
[14] Tabatabaei FS, Torshabi M. In vitro proliferation and osteogenic differentiation of endometrial stem cells and dental pulp stem cells[J]. Cell Tissue Bank, 2017, 18(2):239-247.
doi: 10.1007/s10561-017-9620-y pmid: 28364342
[15] Nakajima K, Kunimatsu R, Ando K, et al. Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow me-senchymal stem cells[J]. Biochem Biophys Res Commun, 2018, 497(3):876-882.
doi: 10.1016/j.bbrc.2018.02.156
[16] Ding G, Niu J, Liu Y. Dental pulp stem cells suppress the proliferation of lymphocytes via transfor-ming growth factor-β1[J]. Hum Cell, 2015, 28(2):81-90.
doi: 10.1007/s13577-014-0106-y
[17] Hossein-Khannazer N, Hashemi SM, Namaki S, et al. Study of the immunomodulatory effects of osteogenic differentiated human dental pulp stem cells[J]. Life Sci, 2019, 216:111-118.
doi: S0024-3205(18)30761-6 pmid: 30465790
[18] Awais S, Balouch SS, Riaz N, et al. Human dental pulp stem cells exhibit osteogenic differentiation potential[J]. Open Life Sci, 2020, 15:229-236.
[19] Huang TY, Su WT, Chen PH. Comparing the effects of chitosan scaffolds containing various divalent me-tal phosphates on osteogenic differentiation of stem cells from human exfoliated deciduous teeth[J]. Biol Trace Elem Res, 2018, 185(2):316-326.
doi: 10.1007/s12011-018-1256-7
[20] Suchanek J, Nasry SA, Soukup T. The differentiation potential of human natal dental pulp stem cells into insulin-producing cells[J]. Folia Biol (Praha), 2017, 63(4):132-138.
[21] Zou T, Jiang S, Dissanayaka WL, et al. Sema4D/PlexinB1 promotes endothelial differentiation of de-ntal pulp stem cells via activation of AKT and ERK1/2 signaling[J]. J Cell Biochem, 2019, 120(8):13614-13624.
doi: 10.1002/jcb.v120.8
[22] Victor AK, Reiter LT. Dental pulp stem cells for the study of neurogenetic disorders[J]. Hum Mol Genet, 2017, 26(R2):R166-R171.
doi: 10.1093/hmg/ddx208
[23] Song DH, Xu P, Liu S, et al. Dental pulp stem cells expressing SIRT1 improve new bone formation du-ring distraction osteogenesis[J]. Am J Transl Res, 2019, 11(2):832-843.
[24] Tsutsui TW. Dental pulp stem cells: advances to applications[J]. Stem Cells Cloning, 2020, 13:33-42.
[25] Lamba M. Drynaria fortunei: another leap in herbal approach to periodontics[J]. Int J Sci Res, 2016, 5(1):136-138.
[26] Dong GC, Ma TY, Li CH, et al. A study of Drynaria fortunei in modulation of BMP-2 signalling by bone tissue engineering[J]. Turkish J Med Sci, 2020, 50(5):1444-1453.
[27] Guo W, Shi K, Xiang G, et al. Effects of rhizoma drynariae cataplasm on fracture healing in a rat mo-del of osteoporosis[J]. Med Sci Monit, 2019, 25:3133-3139.
doi: 10.12659/MSM.914568
[28] 孟春力. 骨碎补提取物调节成骨细胞活性、增殖及相关基因表达的实验研究[J]. 海南医学院学报, 2017, 23(8):1023-1026.
Meng CL. Rhizome drynariae extract regulates os-teoblast viability and proliferation as well as related gene expression: an experimental study[J]. J Hainan Med Univ, 2017, 23(8):1023-1026.
[29] 郭晶洁, 高永博, 许彦枝. 骨碎补对人牙髓细胞体外诱导的作用[J]. 天津医药, 2008, 36(9):701-703.
Guo JJ, Gao YB, Yu YZ. Inductive effects of rhizo-ma drynariae on human dental pulp cells in vitro[J]. Tianjin Med, 2008, 36(9):701-703.
[30] Huang XF, Yuan SJ, Yang C. Effects of total flavonoids from drynaria fortunei on the proliferation and osteogenic differentiation of rat dental pulp stem cells[J]. Mol Med Rep, 2012, 6(3):547-552.
doi: 10.3892/mmr.2012.974
[31] Lavrador P, Gaspar VM, Mano JF. Bioinspired bone therapies using naringin: applications and advances[J]. Drug Discov Today, 2018, 23(6):1293-1304.
doi: S1359-6446(18)30069-2 pmid: 29747006
[32] Huang T, Liu YN, Zhang CL. Pharmacokinetics and bioavailability enhancement of baicalin: a review[J]. Eur J Drug Metab Pharmacokinet, 2019, 44(2):159-168.
doi: 10.1007/s13318-018-0509-3
[33] 薛晶, 俞艳, 王利娟, 等. 中药黄芩苷对牙髓干细胞增殖及成牙成骨分化能力的影响[J]. 口腔生物医学, 2015, 6(1):11-14.
Xue J, Yu Y, Wang LJ, et al. Effect of baicalin on the proliferation and odento/osteogenic differentia-tion of human dental pulp stem cells[J]. Oral Biomed, 2015, 6(1):11-14.
[34] Zhang R, Yang J, Wu J, et al. Berberine promotes osteogenic differentiation of mesenchymal stem cells with therapeutic potential in periodontal regeneration[J]. Eur J Pharmacol, 2019, 851:144-150.
doi: S0014-2999(19)30123-2 pmid: 30776366
[35] Habtemariam S. Berberine and inflammatory bowel disease: a concise review[J]. Pharmacol Res, 2016, 113(Pt A):592-599.
doi: S1043-6618(16)30615-6 pmid: 27697643
[36] Xin BC, Wu QS, Jin S, et al. Berberine promotes osteogenic differentiation of human dental pulp stem cells through activating EGFR-MAPK-Runx2 pathways[J]. Pathol Oncol Res, 2020, 26(3):1677-1685.
doi: 10.1007/s12253-019-00746-6
[37] Wei Q, He M, Chen M, et al. Icariin stimulates osteogenic differentiation of rat bone marrow stromal stem cells by increasing TAZ expression[J]. Biomed Pharmacother, 2017, 91:581-589.
doi: 10.1016/j.biopha.2017.04.019
[38] 麻丹丹, 吴补领. 淫羊藿苷对人牙髓干细胞增殖及骨向分化的作用[J]. 牙体牙髓牙周病学杂志, 2015, 25(9):524-528.
Ma DD, Wu BL. The effect of icariin on the pro-liferation and osteogenic differentiation of human den-tal pulp stem cells[J]. Chin J Conserv Dent, 2015, 25(9):524-528.
[39] Liu CM, Yang W, Ma JQ, et al. Dihydromyricetin inhibits lead-induced cognitive impairments and inflammation by the adenosine 5’-monophosphate-activated protein kinase pathway in mice[J]. J Agric Food Chem, 2018, 66(30):7975-7982.
doi: 10.1021/acs.jafc.8b02433
[40] Zhang W, Wang S, Yin H, et al. Dihydromyricetin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro partially via the activation of Wnt/β-catenin signaling pathway[J]. Fundam Clin Pharmacol, 2016, 30(6):596-606.
doi: 10.1111/fcp.2016.30.issue-6
[41] 李夏宁. 二氢杨梅素对人乳牙牙髓干细胞活性及成骨分化能力影响的初步探究[D]. 河南: 郑州大学, 2017.
Li XN. Preliminary inquiry on the effects of Dihy-dromyricetin on the activity and osteogenic diffe-rentiation of stem cells from human exfoliated deci-duous teeth[D]. Henan: Zhengzhou University, 2017.
[42] Hara K, Yamada Y, Nakamura S, et al. Potential cha-racteristics of stem cells from human exfoliated deciduous teeth compared with bone marrow-derived mesenchymal stem cells for mineralized tissue-for-ming cell biology[J]. J Endod, 2011, 37(12):1647-1652.
doi: 10.1016/j.joen.2011.08.023
[43] Moraschini V, Almeida DCF, Calasans-Maia JA, et al. The ability of topical and systemic statins to increase osteogenesis around dental implants: a systematic review of histomorphometric outcomes in animal studies[J]. Int J Oral Maxillofac Surg, 2018, 47(8):1070-1078.
[44] Gupta S, Del Fabbro M, Chang J. The impact of simvastatin intervention on the healing of bone, soft tissue, and TMJ cartilage in dentistry: a systematic review and meta-analysis[J]. Int J Implant Dent, 2019, 5(1):17.
doi: 10.1186/s40729-019-0168-4
[45] Zijah V, Salehi R, Aghazadeh M, et al. Towards optimization of odonto/osteogenic bioengineering: in vitro comparison of simvastatin, sodium fluoride, melanocyte-stimulating hormone[J]. In Vitro Cell Dev Biol Anim, 2017, 53(6):502-512.
[46] Samiei M, Aghazadeh M, Alizadeh E, et al. Osteogenic/odontogenic bioengineering with co-administration of simvastatin and hydroxyapatite on poly caprolactone based nanofibrous scaffold[J]. Adv Pharm Bull, 2016, 6(3):353-365.
doi: 10.15171/apb.2016.047
[47] Li Y, Luo Z, Xu X, et al. Aspirin enhances the osteogenic and anti-inflammatory effects of human me-senchymal stem cells on osteogenic BFP-1 peptide-decorated substrates[J]. J Mater Chem B, 2017, 5(34):7153-7163.
doi: 10.1039/C7TB01732D
[48] Li Y, Bai Y, Pan J, et al. A hybrid 3D-printed aspirin-laden liposome composite scaffold for bone tissue engineering[J]. J Mater Chem B, 2019, 7(4):619-629.
doi: 10.1039/C8TB02756K
[49] Yuan M, Zhan Y, Hu W, et al. Aspirin promotes osteogenic differentiation of human dental pulp stem cells[J]. Int J Mol Med, 2018, 42(4):1967-1976.
[50] An YZ, Xu MD, An YC, et al. Combined application of dexamethasone and tranexamic acid to reduce the postoperative inflammatory response and improve functional outcomes in total hip arthroplasty[J]. Orthop Surg, 2020, 12(2):582-588.
doi: 10.1111/os.v12.2
[51] Li R, Ma Y, Zhang Y, et al. Potential of rhBMP-2 and dexamethasone-loaded Zein/PLLA scaffolds for enhanced in vitro osteogenesis of mesenchymal stem cells[J]. Colloids Surf B Biointerfaces, 2018, 169:384-394.
doi: 10.1016/j.colsurfb.2018.05.039
[52] Moretti RDC, Duailibi MT, Martins PO, et al. Osteoinductive effects of preoperative dexamethasone in human dental pulp stem cells primary culture[J]. Future Sci OA, 2017, 3(3): FSO184.
[53] Wang D, Zhu NX, Qin M, et al. Betamethasone suppresses the inflammatory response in LPS-stimula-ted dental pulp cells through inhibition of NF-κB[J]. Arch Oral Biol, 2019, 98:156-163.
doi: S0003-9969(18)30455-2 pmid: 30500665
[54] Deng J, Peng M, Wang Z, et al. Novel application of metformin combined with targeted drugs on anticancer treatment[J]. Cancer Sci, 2019, 110(1):23-30.
doi: 10.1111/cas.2019.110.issue-1
[55] Zhang R, Liang Q, Kang W, et al. Metformin facilitates the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells in vitro[J]. Cell Biol Int, 2019. doi: 10.1002/cbin.11202.
doi: 10.1002/cbin.11202
[56] Wang P, Ma T, Guo D, et al. Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells[J]. J Tissue Eng Regen Med, 2018, 12(2):437-446.
doi: 10.1002/term.v12.2
[57] Wang S, Yang X, Tao M, et al. Novel metformin-containing resin promotes odontogenic differentiation and mineral synjournal of dental pulp stem cells[J]. Drug Deliv Transl Res, 2019, 9(1):85-96.
doi: 10.1007/s13346-018-00600-3
[58] Houshmand B, Tabibzadeh Z, Motamedian SR, et al. Effect of metformin on dental pulp stem cells attachment, proliferation and differentiation cultured on biphasic bone substitutes[J]. Arch Oral Biol, 2018, 95:44-50.
doi: S0003-9969(18)30392-3 pmid: 30048855
[59] 薛晶. 中药黄芩苷对炎症牙髓干细胞增殖及牙向/骨向分化的影响及机制研究[D]. 南京: 南京医科大学, 2015.
Xue J. Study on the effects of baicalin on the pro-liferation and odonto/osteogenic differentiation of inflammatory dental pulp stem cells and its mecha-nism[D]. Nanjing: Nanjing Medical University, 2015.
[60] He W, Wang Z, Luo Z, et al. LPS promote the odontoblastic differentiation of human dental pulp stem cells via MAPK signaling pathway[J]. J Cell Phy-siol, 2015, 230(3):554-561.
[61] Cui YM, Han XH, Lin YY, et al. TNF-α was involved in calcium hydroxide-promoted osteogenic differentiation of human DPSCs through NF-κB/p38-MAPK/Wnt pathway[J]. Pharmazie, 2017, 72(6):329-333.
doi: 10.1691/ph.2017.7450 pmid: 29442020
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[3] Yu Lerong,Li Xiangwei,Ai Hong. Research progress on the stemness maintenance of dental pulp stem cells [J]. Int J Stomatol, 2023, 50(4): 463-471.
[4] Xu Yanxue,Fu Li.. Research progress on functionally graded membranes for guided bone regeneration [J]. Int J Stomatol, 2023, 50(3): 353-358.
[5] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[6] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[7] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[8] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[9] Li Yanfei,Zhang Xinchun. Research progress on the dentin bone repair material [J]. Int J Stomatol, 2022, 49(2): 197-203.
[10] Fu Hengyi,Wang Chenglin. Research progress on serum-free culture methods of human dental pulp stem cells and cell characterization [J]. Int J Stomatol, 2022, 49(2): 220-226.
[11] Liang Yi,Pei Xibo,Wan Qianbing. Research progress on the biomedical applications of photosensitive hydrogels [J]. Int J Stomatol, 2022, 49(1): 12-18.
[12] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
[13] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[14] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[15] Li Yan,Meng Chenda,Xu Quanchen. Etiology and progress in the therapy of drug-induced gingival enlargement [J]. Int J Stomatol, 2020, 47(6): 693-698.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .