Int J Stomatol ›› 2022, Vol. 49 ›› Issue (2): 197-203.doi: 10.7518/gjkq.2022025

• Reviews • Previous Articles     Next Articles

Research progress on the dentin bone repair material

Li Yanfei(),Zhang Xinchun()   

  1. Dept. of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2021-08-05 Revised:2021-11-12 Online:2022-03-01 Published:2022-03-15
  • Contact: Xinchun Zhang E-mail:liyf273@mail2.sysu.edu.cn;zhxinch@mail.sysu.edu.cn
  • Supported by:
    Natural Science Foundation of Guangdong Province(2019A1515010450);Guangzhou Science and Technology Program(202002030055)

Abstract:

Various events can cause oral bone loss, which results in the dysfunction of oral and maxillofacial area and difficulties in oral rehabilitation. Therefore, a new osteogenic material possesses excellent osteoconductivity, osteoinductivity, biocompatibility, and absorbability. Dentin has been widely explored as a novel bone repair material, which can be obtained from a wide range of sources such as waste or impacted teeth. It shares the same neural crest embryonic origin with a maxillofacial bone and resembles each other in physiochemical characteristics, which give dentin a natural advantage to promote bone regeneration. Dentin is also a storage of various bioactive molecules and growth factors. A great number of animal studies have shown that dentin can induce bone regeneration. Numerous successful clinical outcomes of dentin have been reported when it is used in a variety of therapies. This review aims to introduce the bone formation mechanism, preparation procedure, and clinical application of dentin bone repair material and provide further theoretical basis for its use.

Key words: dentin, bone repair material, bone defect, osteoinduction, bone regeneration

CLC Number: 

  • R782

TrendMD: 
[1] Yamada M, Egusa H. Current bone substitutes for implant dentistry[J]. J Prosthodont Res, 2018, 62(2): 152-161.
doi: 10.1016/j.jpor.2017.08.010
[2] Yeomans JD Urist MR. Bone induction by decalcified dentine implanted into oral, osseous and muscle tissues[J]. Arch Oral Biol, 1967, 12(8): 999-IN16.
pmid: 4226721
[3] Huggins CB, Urist MR. Dentin matrix transformation: rapid induction of alkaline phosphatase and cartilage[J]. Science, 1970, 167(3919): 896-898.
pmid: 5410857
[4] Koga T, Minamizato T, Kawai Y, et al. Bone regeneration using dentin matrix depends on the degree of demineralization and particle size[J]. PLoS One, 2016, 11(1): e0147235.
doi: 10.1371/journal.pone.0147235
[5] Sriarj W, Aoki K, Ohya K, et al. TGF-β in dentin matrix extract induces osteoclastogenesis in vitro[J]. Odontology, 2015, 103(1): 9-18.
doi: 10.1007/s10266-013-0140-3
[6] Yang H, Li J, Hu Y, et al. Treated dentin matrix particles combined with dental follicle cell sheet stimulate periodontal regeneration[J]. Dent Mater, 2019, 35(9): 1238-1253.
doi: 10.1016/j.dental.2019.05.016
[7] Ji B, Sheng L, Chen G, et al. The combination use of platelet-rich fibrin and treated dentin matrix for tooth root regeneration by cell homing[J]. Tissue Eng Part A, 2015, 21(1/2): 26-34.
doi: 10.1089/ten.tea.2014.0043
[8] 杨禾丰, 胡瑜, 孙晶晶, 等. 处理的牙本质基质对骨髓间充质干细胞成骨分化影响的研究[J]. 华西口腔医学杂志, 2016, 34(3): 281-285.
Yang HF, Hu Y, Sun JJ, et al. Treated dentin matrix enhances proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells[J]. West China J Stomatol, 2016, 34(3): 281-285.
[9] Kim YK, Lee J, Um IW, et al. Tooth-derived bone graft material[J]. J Korean Assoc Oral Maxillofac Surg, 2013, 39(3): 103.
doi: 10.5125/jkaoms.2013.39.3.103
[10] Calvo-Guirado JL, Ballester-Montilla A, N de Aza P, et al. Particulated, extracted human teeth characterization by SEM-EDX evaluation as a biomaterial for socket preservation: an in vitro study[J]. Materials, 2019, 12(3): 380.
doi: 10.3390/ma12030380
[11] Tabatabaei FS, Tatari S, Samadi R, et al. Different methods of dentin processing for application in bone tissue engineering: a systematic review[J]. J Biomed Mater Res Part A, 2016, 104(10): 2616-2627.
doi: 10.1002/jbm.a.35790
[12] Avery SJ, Sadaghiani L, Sloan AJ, et al. Analysing the bioactive makeup of demineralised dentine matrix on bone marrow mesenchymal stem cells for enhanced bone repair[J]. Eur Cell Mater, 2017, 34: 1-14.
doi: 10.22203/eCM.v034a01 pmid: 28692113
[13] Wang F, Xie C, Ren N, et al. Human freeze-dried dentin matrix as a biologically active scaffold for tooth tissue engineering[J]. J Endod, 2019, 45(11): 1321-1331.
doi: 10.1016/j.joen.2019.08.006
[14] Maeda NT, Yoshimoto M, Allegrini S, et al. Hydroxyapatite dome for bone neoformation in rabbit tibia[J]. Int J Oral Maxillofac Implants, 2016, 31(3): 571-579.
[15] Wang YS, Luo S, Zhang DF, et al. Sika pilose antler type I collagen promotes BMSC differentiation via the ERK1/2 and p38-MAPK signal pathways[J]. Pharm Biol, 2017, 55(1): 2196-2204.
doi: 10.1080/13880209.2017.1397177
[16] Tsai SJ, Chen MH, Lin HY, et al. Pure type-1 collagen application to third molar extraction socket reduces postoperative pain score and duration and promotes socket bone healing[J]. J Formos Med Assoc, 2019, 118(1 pt 3): 481-487.
doi: 10.1016/j.jfma.2018.08.003
[17] Guo Y, Yuan Y, Wu L, et al. BMP-IHH-mediated interplay between mesenchymal stem cells and osteoclasts supports calvarial bone homeostasis and repair[J]. Bone Res, 2018, 6: 30.
doi: 10.1038/s41413-018-0031-x
[18] Zhang Y, Yang WX, Devit A, et al. Efficiency of coculture with angiogenic cells or physiological BMP-2 administration on improving osteogenic differentiation and bone formation of MSCs[J]. J Biomed Mater Res Part A, 2019, 107(3): 643-653.
doi: 10.1002/jbm.a.v107.3
[19] Choi JW, Jeong WS, Yang SJ, et al. Appropriate and effective dosage of BMP-2 for the ideal regeneration of calvarial bone defects in beagles[J]. Plast Reconstr Surg, 2016, 138(1): 64e-72e.
doi: 10.1097/PRS.0000000000002290
[20] Bertassoni LE. Dentin on the nanoscale: hierarchical organization, mechanical behavior and bioinspired engineering[J]. Dent Mater, 2017, 33(6): 637-649.
doi: S0109-5641(16)30695-9 pmid: 28416222
[21] Yu Y, Wang LJ, Yu JH, et al. Dentin matrix proteins (DMPs) enhance differentiation of BMMSCs via ERK and P38 MAPK pathways[J]. Cell Tissue Res, 2014, 356(1): 171-182.
doi: 10.1007/s00441-013-1790-8
[22] Padovano JD, Ramachandran A, Bahmanyar S, et al. Bone-specific overexpression of DMP1 influences osteogenic gene expression during endochondral and intramembranous ossification[J]. Connect Tissue Res, 2014, 55(Suppl 1): 121-124.
doi: 10.3109/03008207.2014.923878
[23] Sun Y, Weng Y, Zhang C, et al. Glycosylation of dentin matrix protein 1 is critical for osteogenesis[J]. Sci Rep, 2015, 5: 17518.
doi: 10.1038/srep17518
[24] Chen L, Jacquet R, Lowder E, et al. Refinement of collagen-mineral interaction: a possible role for osteocalcin in apatite crystal nucleation, growth and development[J]. Bone, 2015, 71: 7-16.
doi: 10.1016/j.bone.2014.09.021
[25] Foster BL, Ao M, Salmon CR, et al. Osteopontin regulates dentin and alveolar bone development and mineralization[J]. Bone, 2018, 107: 196-207.
doi: S8756-3282(17)30444-1 pmid: 29313816
[26] Reis-Filho CR, Silva ER, Martins AB, et al. Demineralised human dentine matrix stimulates the expression of VEGF and accelerates the bone repair in tooth sockets of rats[J]. Arch Oral Biol, 2012, 57(5): 469-476.
doi: 10.1016/j.archoralbio.2011.10.011 pmid: 22041019
[27] Um IW. Demineralized dentin matrix (DDM) as a carrier for recombinant human bone morphogenetic proteins (rhBMP-2)[J]. Nov Biomater Regen Med, 2018, 1077: 487-499.
[28] Bono N, Tarsini P, Candiani G. Demineralized dentin and enamel matrices as suitable substrates for bone regeneration[J]. J Appl Biomater Funct Mater, 2017, 15(3): e236-e243.
[29] Bono N, Tarsini P, Candiani G. BMP-2 and type I collagen preservation in human deciduous teeth after demineralization[J]. J Appl Biomater Funct Mater, 2019, 17(2): 2280800018784230.
[30] 郭津源, 仲维剑, 柴松岭, 等. 牙齿煅烧颗粒结合富血小板纤维蛋白修复骨缺损的实验研究[J]. 口腔医学研究, 2015, 31(11): 1069-1072.
Guo JY, Zhong WJ, Chai SL, et al. Bone regeneration effects of tooth ash in conjunction with platelet-rich fibrin in an animal model[J]. J Oral Sci Res, 2015, 31(11): 1069-1072.
[31] Kim SG. Bone grafting using particulate dentin[J]. Key Eng Mater, 2007(342/343): 29-32.
[32] Atiya BK, Shanmuhasuntharam P, Huat S, et al. Liquid nitrogen-treated autogenous dentin as bone substitute: an experimental study in a rabbit model[J]. Int J Oral Maxillofac Implants, 2014, 29(2): e165-e170.
doi: 10.11607/jomi.te54
[33] Fichant C, David B, Reiss T, et al. Characterization of deproteinized dentin for its use in bone tissue engineering[J]. Comput Methods Biomech Biomed Engin, 2017, 20(Sup1): 73-74.
[34] Tabatabaei FS, Tatari S, Samadi R, et al. Surface characterization and biological properties of regular dentin, demineralized dentin, and deproteinized dentin[J]. J Mater Sci Mater Med, 2016, 27(11): 164.
doi: 10.1007/s10856-016-5780-8
[35] Moharamzadeh K, Freeman C, Blackwood K. Processed bovine dentine as a bone substitute[J]. Br J Oral Maxillofac Surg, 2008, 46(2): 110-113.
pmid: 17897757
[36] Jaha H, Husein D, Ohyama Y, et al. N-terminal dentin sialoprotein fragment induces type I collagen production and upregulates dentinogenesis marker expression in osteoblasts[J]. Biochem Biophys Rep, 2016, 6: 190-196.
[37] Bailey S, Karsenty G, Gundberg C, et al. Osteocalcin and osteopontin influence bone morphology and mechanical properties[J]. Ann N Y Acad Sci, 2017, 1409(1): 79-84.
doi: 10.1111/nyas.2017.1409.issue-1
[38] Zhang H, Xie X, Liu P, et al. Transgenic expression of dentin phosphoprotein (DPP) partially rescued the dentin defects of DSPP-null mice[J]. PLoS One, 2018, 13(4): e0195854.
doi: 10.1371/journal.pone.0195854
[39] Li W, Chen L, Chen Z, et al. Dentin sialoprotein facilitates dental mesenchymal cell differentiation and dentin formation[J]. Sci Rep, 2017, 7(1): 300.
doi: 10.1038/s41598-017-00339-w
[40] Chandrasekaran S, Ramachandran A, Eapen A, et al. Stimulation of periodontal ligament stem cells by dentin matrix protein 1 activates mitogen-activated protein kinase and osteoblast differentiation[J]. J Periodontol, 2013, 84(3): 389-395.
doi: 10.1902/jop.2012.120004 pmid: 22612367
[41] Lee CP, Colombo JS, Ayre WN, et al. Elucidating the cellular actions of demineralised dentine matrix extract on a clonal dental pulp stem cell population in orchestrating dental tissue repair[J]. J Tissue Eng, 2015, 6: 204173141558631.
[42] Kim SY, Kim YK, Park YH, et al. Evaluation of the healing potential of demineralized dentin matrix fixed with recombinant human bone morphogenetic protein-2 in bone grafts[J]. Materials, 2017, 10(9): 1049.
doi: 10.3390/ma10091049
[43] Gomes MF, Valva VN, Vieira EMM, et al. Homogenous demineralized dentin matrix and platelet-rich plasma for bone tissue engineering in cranioplasty of diabetic rabbits: biochemical, radiographic, and histological analysis[J]. Int J Oral Maxillofac Surg, 2016, 45(2): 255-266.
[44] Kabir MA, Murata M, Akazawa T, et al. Evaluation of perforated demineralized dentin scaffold on bone regeneration in critical-size sheep iliac defects[J]. Clin Oral Implants Res, 2017, 28(11): e227-e235.
[45] Schwarz F, Schmucker A, Becker J. Initial case report of an extracted tooth root used for lateral alveolar ridge augmentation[J]. J Clin Periodontol, 2016, 43(11): 985-989.
doi: 10.1111/jcpe.12602 pmid: 27440735
[46] Melek LN, El Said MM. Evaluation of “autogenous bioengineered injectable PRF-tooth graft” combination (ABIT) in reconstruction of maxillary alveolar ridge defects: CBCT volumetric analysis[J]. Saudi J Dent Res, 2017, 8(1/2): 86-96.
doi: 10.1016/j.sjdr.2016.10.005
[47] Kim YK, Kim SG, Yun PY, et al. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2014, 117(1): e39-e45.
doi: 10.1016/j.oooo.2012.04.018
[48] Kim YK, Lee JH, Um IW, et al. Guided bone regeneration using demineralized dentin matrix: long-term follow-up[J]. J Oral Maxillofac Surg, 2016, 74(3): 515.e1-515.e9.
doi: 10.1016/j.joms.2015.10.030
[49] Kim YK, Pang KM, Yun PY, et al. Long-term follow-up of autogenous tooth bone graft blocks with dental implants[J]. Clin Case Rep, 2017, 5(2): 108-118.
doi: 10.1002/ccr3.2017.5.issue-2
[50] Minamizato T, Koga T, I T, et al. Clinical application of autogenous partially demineralized dentin matrix prepared immediately after extraction for alveolar bone regeneration in implant dentistry: a pilot study[J]. Int J Oral Maxillofac Surg, 2018, 47(1): 125-132.
doi: 10.1016/j.ijom.2017.02.1279
[51] Kim YK, Lee J, Yun JY, et al. Comparison of autogenous tooth bone graft and synthetic bone graft materials used for bone resorption around implants after crestal approach sinus lifting: a retrospective study[J]. J Periodontal Implant Sci, 2014, 44(5): 216-221.
doi: 10.5051/jpis.2014.44.5.216
[52] Pang KM, Um IW, Kim YK, et al. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: a prospective randomized clinical trial in comparison with anorganic bovine bone[J]. Clin Oral Impl Res, 2017, 28(7): 809-815.
doi: 10.1111/clr.2017.28.issue-7
[53] 吴峥嵘, 左园林, 李朝晖. 自体牙本质颗粒结合富血小板纤维蛋白膜治疗93例下颌第一磨牙根分叉病变效果评价[J]. 上海口腔医学, 2020, 29(2): 213-216.
Wu ZR, Zuo YL, Li CH. Evaluation of 93 cases of mandibular first molar root bifurcation lesions treated with autologous dentin Granules combined with platelet-rich fibrin membrane[J]. Shanghai J Stomatol, 2020, 29(2): 213-216.
[54] Xiao W, Hu C, Chu C, et al. Autogenous dentin shell grafts versus bone shell grafts for alveolar ridge reconstruction: a novel technique with preliminary results of a prospective clinical study[J]. Int J Periodontics Restorative Dent, 2019, 39(6): 885-893.
doi: 10.11607/prd.4344
[55] Schwarz F, Hazar D, Becker K, et al. Efficacy of autogenous tooth roots for lateral alveolar ridge augmentation and staged implant placement. A prospective controlled clinical study[J]. J Clin Periodontol, 2018, 45(8): 996-1004.
doi: 10.1111/jcpe.12977 pmid: 29972245
[56] Kim ES. Autogenous fresh demineralized tooth graft prepared at chairside for dental implant[J]. Maxillofac Plast Reconstr Surg, 2015, 37(1): 8.
doi: 10.1186/s40902-015-0009-1
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Xu Yanxue,Fu Li.. Research progress on functionally graded membranes for guided bone regeneration [J]. Int J Stomatol, 2023, 50(3): 353-358.
[3] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[4] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[5] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[6] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[7] Lei Bin,Chen Ke. Classification and treatment of dentin dysplasia type[J]. Int J Stomatol, 2022, 49(3): 332-336.
[8] Ding Jingyu,Tian Zilu,Wang Huimin,Zhu Xuanyan,Yang Yubin,Zhu Song. Advancement of immediate dentin sealing [J]. Int J Stomatol, 2022, 49(1): 121-124.
[9] Zhang Shan,Shen Shuping,Zhang Fang,Yang Weidong. Effect of photon-initiated photoacoustic streaming Er: YAG laser on the water loss of dentin and compressive strength of root [J]. Int J Stomatol, 2022, 49(1): 55-59.
[10] He Rong,Liu Xuejun,Zhou Yukun. Systematic review on the effect of photon-initiated photoacoustic streaming in endodontic irrigation [J]. Int J Stomatol, 2021, 48(6): 644-655.
[11] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[12] Liu Jiacheng,Meng Zhaosong,Li Hongjie,Sui Lei. The role of follistatin in oral and maxillofacial development and its therapeutic application prospect [J]. Int J Stomatol, 2021, 48(5): 556-562.
[13] Zhao Wenjun,Chen Yu. Research progress on periodontal functional gradient membrane for guided tissue/bone regeneration [J]. Int J Stomatol, 2021, 48(4): 391-397.
[14] Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70.
[15] Zhao Binbin,Zhong Weijian,Ma Guowu. Research progress on dentin as bone transplantation material [J]. Int J Stomatol, 2021, 48(1): 82-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .