Int J Stomatol ›› 2021, Vol. 48 ›› Issue (5): 556-562.doi: 10.7518/gjkq.2021099

• Reviews • Previous Articles     Next Articles

The role of follistatin in oral and maxillofacial development and its therapeutic application prospect

Liu Jiacheng1(),Meng Zhaosong2,Li Hongjie1,Sui Lei3()   

  1. 1. Dept. of Pathology, School & Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
    2. Dept. of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
    3. Dept. of Prosthodontics, School & Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
  • Received:2021-02-21 Revised:2021-06-06 Online:2021-09-01 Published:2021-09-10
  • Contact: Lei Sui E-mail:928299023@qq.com;suilei@tmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(81700927)

Abstract:

Follistatin (FST) is a single-chain glycoprotein synthesized and secreted by pituitary, liver, bone, and other tissues. It has extensive tissue distribution and a variety of physiological and pathological functions proven to have therapeutic value in inflammation, bone injury, and muscle atrophy by in vivo and in vitro experiments. Recent studies have demonstrated that FST plays a key role in maintaining the homeostasis of oral and maxillofacial tissues. FST has potential value in the treatment of oral inflammation, bone injury, and other diseases and is particularly important for the development of soft and hard tissues, such as teeth, lip, palate, and jaw. FST expresses in oral and maxillofacial epithelium and mesenchyme, where it antagonizes the transforming growth factor-β signaling pathway through binding to activin and bone morphogenetic proteins. Therefore, it participates in the regulation of oral and maxillofacial development as well as the occurrence and development of related diseases. This paper focuses on the role, mechanism, and application prospect of FST in oral and maxillofacial development and diseases in order to lay a foundation for its further research and clinical application in the field of stomatology.

Key words: follistatin, growth and development, squamous cell cancer, inflammation, bone regeneration

CLC Number: 

  • R782

TrendMD: 

Fig 1

The mechanism of FST in regulation of ACT and BMPs signaling pathways"

Tab 1

The distribution and functions of FST target protein signaling pathway components in oral and maxillofacial region and the mechanism of FST on them"

信号通路 信号蛋白 主要表达细胞 生理功能 FST作用机制
ACT信号
通路
ACT[16-17,34] 牙间充质细胞、成骨细胞 参与早期骨和牙胚的形成及破骨细胞分化 FST二聚体与ACT二聚体构成复合体,使ACT与受体结合受阻
Smad2[18,29,38] 牙上皮、间充质细胞、成牙本质细胞、单核巨噬细胞 参与中胚层和下颌骨的发育,调控釉质、牙本质、破骨细胞的形成 磷酸化受阻
Smad3[18,38] 同Smad2 调控釉质、牙本质的形成和破骨细胞分化 同Smad2
通用传导
蛋白
Smad4[19-20,30] 牙上皮、间充质细胞、成牙本质细胞 参与第一鳃弓、面突和正常牙体的发育,维持牙源性干细胞稳态 招募及入核受阻
BMP信号
通路
BMP2[21-23,28,34] 成骨细胞、牙上皮、间充质细胞、成牙本质细胞 参与早期骨形成及腭发育、牙根发育,促进成牙本质细胞和成釉细胞分化 1分子FST、1分子BMP与1分子Ⅱ型BMP受体构成复合体,使Ⅰ型BMP受体磷酸化受阻
BMP4[16,28,39] 成骨细胞、成釉细胞、牙间充质细胞 参与早期骨形成和腭发育,调控成釉细胞分化和釉质形成,参与上皮间充质的相互作用 同BMP2
BMP7[16,24,39] 成骨细胞、前成釉细胞、前成牙本质细胞 参与早期骨形成,维持HERS正常结构 同BMP2
Smad1[21-23,36-37] 同BMP2 参与BMP2的生理过程 磷酸化受阻
Smad5[21-23,36-37] 同BMP2 参与BMP2的生理过程 同Smad1
Smad8[21-23,36-37] 同BMP2 参与BMP2的生理过程 同Smad1
Smad9[36] 成骨细胞 参与BMP2骨调控过程 同Smad1
GDF11[25,26] 胚胎期面部上皮、间充质细胞 参与唇、腭发育 FST二聚体与GDF11二聚体构成复合体,使GDF11与受体结合受阻

Fig 2

The prospect of therapeutic applications of FST"

[1] Rajput SK, Yang C, Ashry M, et al. Role of bone morphogenetic protein signaling in bovine early embryonic development and stage specific embryotro-pic actions of follistatin[J]. Biol Reprod, 2020, 102(4):795-805.
doi: 10.1093/biolre/ioz235
[2] Fang DY, Lu B, Hayward S, et al. The role of activin A and B and the benefit of follistatin treatment in renal ischemia-reperfusion injury in mice[J]. Transplant Direct, 2016, 2(7):e87.
[3] Shi L, Resaul J, Owen S, et al. Clinical and therapeutic implications of follistatin in solid tumours[J]. Cancer Genomics Proteomics, 2016, 13(6):425-435.
doi: 10.21873/cgp
[4] Shoji-Kasai Y, Ageta H, Hasegawa Y, et al. Activin increases the number of synaptic contacts and the length of dendritic spine necks by modulating spinal actin dynamics[J]. J Cell Sci, 2007, 120(Pt 21):3830-3837.
pmid: 17940062
[5] Walker RG, Poggioli T, Katsimpardi L, et al. Biochemistry and biology of GDF11 and myostatin: similarities, differences, and questions for future investigation[J]. Circ Res, 2016, 118(7):1125-1141, 1142.
doi: 10.1161/CIRCRESAHA.116.308391 pmid: 27034275
[6] Seachrist DD, Keri RA. The activin social network: activin, inhibin, and follistatin in breast development and cancer[J]. Endocrinology, 2019, 160(5):1097-1110.
doi: 10.1210/en.2019-00015 pmid: 30874767
[7] Zhang LD, Liu KL, Han B, et al. The emerging role of follistatin under stresses and its implications in diseases[J]. Gene, 2018, 639:111-116.
doi: 10.1016/j.gene.2017.10.017
[8] Schneyer AL, Wang QF, Sidis Y, et al. Differential distribution of follistatin isoforms: application of a new FS315-specific immunoassay[J]. J Clin Endocrinol Metab, 2004, 89(10):5067-5075.
doi: 10.1210/jc.2004-0162
[9] Patel K. Follistatin[J]. Int J Biochem Cell Biol, 1998, 30(10):1087-1093.
doi: 10.1016/S1357-2725(98)00064-8
[10] Hansen JS, Plomgaard P. Circulating follistatin in relation to energy metabolism[J]. Mol Cell Endocrinol, 2016, 433:87-93.
doi: 10.1016/j.mce.2016.06.002
[11] Olsen OE, Hella H, Elsaadi S, et al. Activins as dual specificity TGF-β family molecules: SMAD-activation via activin- and BMP-type 1 receptors[J]. Biomolecules, 2020, 10(4):E519.
[12] Nickel J, Mueller TD. Specification of BMP signa-ling[J]. Cells, 2019, 8(12):1579.
doi: 10.3390/cells8121579
[13] Wijayarathna R, de Kretser DM. Activins in reproductive biology and beyond[J]. Hum Reprod Update, 2016, 22(3):342-357.
doi: 10.1093/humupd/dmv058 pmid: 26884470
[14] Sidis Y, Mukherjee A, Keutmann H, et al. Biological activity of follistatin isoforms and follistatin-like-3 is dependent on differential cell surface binding and specificity for activin, myostatin, and bone morphogenetic proteins[J]. Endocrinology, 2006, 147(7):3586-3597.
doi: 10.1210/en.2006-0089
[15] Hashimoto O, Kawasaki N, Tsuchida K, et al. Difference between follistatin isoforms in the inhibition of activin signalling: activin neutralizing activity of follistatin isoforms is dependent on their affinity for activin[J]. Cell Signal, 2000, 12(8):565-571.
pmid: 11027950
[16] Wang XP, Suomalainen M, Jorgez CJ, et al. Follis-tatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation[J]. Dev Cell, 2004, 7(5):719-730.
doi: 10.1016/j.devcel.2004.09.012
[17] Ferguson CA, Tucker AS, Christensen L, et al. Activin is an essential early mesenchymal signal in too-th development that is required for patterning of the murine dentition[J]. Genes Dev, 1998, 12(16):2636-2649.
doi: 10.1101/gad.12.16.2636
[18] Li S, Pan Y. Immunolocalization of connective tissue growth factor, transforming growth factor-beta1 and phosphorylated-SMAD2/3 during the postnatal tooth development and formation of junctional epithelium[J]. Ann Anat, 2018, 216:52-59.
doi: 10.1016/j.aanat.2017.10.005
[19] Li JY, Feng JF, Liu Y, et al. BMP-SHH signaling network controls epithelial stem cell fate via regulation of its niche in the developing tooth[J]. Dev Cell, 2015, 33(2):125-135.
doi: 10.1016/j.devcel.2015.02.021
[20] Gao YR, Yang G, Weng TJ, et al. Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice[J]. Mol Cell Biol, 2009, 29(21):5941-5951.
doi: 10.1128/MCB.00706-09
[21] Liu J, Saito K, Maruya Y, et al. Mutant GDF5 enhan-ces ameloblast differentiation via accelerated BMP2-induced Smad1/5/8 phosphorylation[J]. Sci Rep, 2016, 6:23670.
doi: 10.1038/srep23670
[22] Fujiwara N, Lee JW, Kumakami-Sakano M, et al. Harmine promotes molar root development via SMAD1/5/8 phosphorylation[J]. Biochem Biophys Res Commun, 2018, 497(3):924-929.
doi: 10.1016/j.bbrc.2017.12.062
[23] Jani P, Liu C, Zhang H, et al. The role of bone morphogenetic proteins 2 and 4 in mouse dentinogenesis[J]. Arch Oral Biol, 2018, 90:33-39.
doi: 10.1016/j.archoralbio.2018.02.004
[24] Zhang R, Teng Y, Zhu L, et al. Odontoblast β-catenin signaling regulates fenestration of mouse Hertwig’s epithelial root sheath[J]. Sci China Life Sci, 2015, 58(9):876-881.
doi: 10.1007/s11427-015-4882-8 pmid: 26208822
[25] Cox TC, Lidral AC, McCoy JC, et al. Mutations in GDF11 and the extracellular antagonist, follistatin, as a likely cause of Mendelian forms of orofacial clefting in humans[J]. Hum Mutat, 2019, 40(10):1813-1825.
doi: 10.1002/humu.v40.10
[26] Gokoffski KK, Wu HH, Beites CL, et al. Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate[J]. Development, 2011, 138(19):4131-4142.
doi: 10.1242/dev.065870 pmid: 21852401
[27] Chu EY, Tamasas B, Fong H, et al. Full spectrum of postnatal tooth phenotypes in a novel Irf6 cleft lip model[J]. J Dent Res, 2016, 95(11):1265-1273.
doi: 10.1177/0022034516656787 pmid: 27369589
[28] Iwata J, Parada C, Chai Y. The mechanism of TGF-β signaling during palate development[J]. Oral Dis, 2011, 17(8):733-744.
doi: 10.1111/j.1601-0825.2011.01806.x pmid: 21395922
[29] Nomura M, Li E. Smad2 role in mesoderm formation, left-right patterning and craniofacial development[J]. Nature, 1998, 393(6687):786-790.
doi: 10.1038/31693
[30] Ko SO, Chung IH, Xu X, et al. Smad4 is required to regulate the fate of cranial neural crest cells[J]. Dev Biol, 2007, 312(1):435-447.
doi: 10.1016/j.ydbio.2007.09.050
[31] Inoue S, Nomura S, Hosoi T, et al. Localization of follistatin, an activin-binding protein, in bone tissues[J]. Calcif Tissue Int, 1994, 55(5):395-397.
doi: 10.1007/BF00299321
[32] Funaba M, Ogawa K, Murata T, et al. Follistatin and activin in bone: expression and localization during endochondral bone development[J]. Endocrinology, 1996, 137(10):4250-4259.
pmid: 8828484
[33] Glister C, Kemp CF, Knight PG. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin[J]. Reproduction, 2004, 127(2):239-254.
pmid: 15056790
[34] Fahmy-Garcia S, Farrell E, Witte-Bouma J, et al. Follistatin effects in migration, vascularization, and osteogenesis in vitro and bone repair in vivo[J]. Front Bioeng Biotechnol, 2019, 7:38.
doi: 10.3389/fbioe.2019.00038
[35] Abe Y, Abe T, Aida Y, et al. Follistatin restricts bone morphogenetic protein (BMP)-2 action on the diffe-rentiation of osteoblasts in fetal rat mandibular cells[J]. J Bone Miner Res, 2004, 19(8):1302-1307.
doi: 10.1359/JBMR.040408
[36] Kim KM, Kim DY, Lee DS, et al. Peroxiredoxin Ⅱ negatively regulates BMP2-induced osteoblast differentiation and bone formation via PP2A Cα-media-ted Smad1/5/9 dephosphorylation[J]. Exp Mol Med, 2019, 51(6):1-11.
[37] Choi H, Jeong BC, Kook MS, et al. Betulinic acid synergically enhances BMP2-induced bone formation via stimulating Smad 1/5/8 and p38 pathways[J]. J Biomed Sci, 2016, 23(1):45.
doi: 10.1186/s12929-016-0260-5
[38] Kajita T, Ariyoshi W, Okinaga T, et al. Mechanisms involved in enhancement of osteoclast formation by activin-A[J]. J Cell Biochem, 2018, 119(8):6974-6985.
doi: 10.1002/jcb.v119.8
[39] Wu MR, Chen GQ, Li YP. TGF-β and BMP signa-ling in osteoblast, skeletal development, and bone formation, homeostasis and disease[J]. Bone Res, 2016, 4:16009.
doi: 10.1038/boneres.2016.9
[40] Yaden BC, Croy JE, Wang Y, et al. Follistatin: a no-vel therapeutic for the improvement of muscle regeneration[J]. J Pharmacol Exp Ther, 2014, 349(2):355-371.
doi: 10.1124/jpet.113.211169
[41] Giesige CR, Wallace LM, Heller KN, et al. AAV-mediated follistatin gene therapy improves functio-nal outcomes in the TIC-DUX4 mouse model of FSHD[J]. JCI Insight, 2018, 3(22):123538.
[42] Mendell JR, Sahenk Z, Al-Zaidy S, et al. Follistatin gene therapy for sporadic inclusion body myositis improves functional outcomes[J]. Mol Ther, 2017, 25(4):870-879.
doi: S1525-0016(17)30092-8 pmid: 28279643
[43] Chen Y, Rothnie C, Spring D, et al. Regulation and actions of activin A and follistatin in myocardial is-chaemia-reperfusion injury[J]. Cytokine, 2014, 69(2):255-262.
doi: 10.1016/j.cyto.2014.06.017 pmid: 25052838
[44] Hardy CL, King SJ, Mifsud NA, et al. The activin A antagonist follistatin inhibits cystic fibrosis-like lung inflammation and pathology[J]. Immunol Cell Biol, 2015, 93(6):567-574.
doi: 10.1038/icb.2015.7
[45] Chang KP, Kao HK, Liang Y, et al. Overexpression of activin A in oral squamous cell carcinoma: association with poor prognosis and tumor progression[J]. Ann Surg Oncol, 2010, 17(7):1945-1956.
doi: 10.1245/s10434-010-0926-2
[46] Bufalino A, Cervigne NK, de Oliveira CE, et al. Low miR-143/miR-145 cluster levels induce activin A overexpression in oral squamous cell carcinomas, which contributes to poor prognosis[J]. PLoS One, 2015, 10(8):e0136599.
doi: 10.1371/journal.pone.0136599
[47] Ervolino De Oliveira C, Dourado MR, Sawazaki-Calone Í, et al. Activin A triggers angiogenesis via regulation of VEGFA and its overexpression is associated with poor prognosis of oral squamous cell carcinoma[J]. Int J Oncol, 2020, 57(1):364-376.
doi: 10.3892/ijo.2020.5058 pmid: 32377747
[48] Omar NN, Rashed RR, El-Hazek RM, et al. Platelet-rich plasma-induced feedback inhibition of activin A/follistatin signaling: a mechanism for tumor-low risk skin rejuvenation in irradiated rats[J]. J Photochem Photobiol B, 2018, 180:17-24.
doi: 10.1016/j.jphotobiol.2018.01.024
[49] Forrester HB, de Kretser DM, Leong T, et al. Follistatin attenuates radiation-induced fibrosis in a murine model[J]. PLoS One, 2017, 12(3):e0173788.
doi: 10.1371/journal.pone.0173788
[50] Hedger MP, Winnall WR, Phillips DJ, et al. The re-gulation and functions of activin and follistatin in inflammation and immunity[J]. Vitam Horm, 2011, 85:255-297.
doi: 10.1016/B978-0-12-385961-7.00013-5 pmid: 21353885
[51] Jones KL, Mansell A, Patella S, et al. Activin A is a critical component of the inflammatory response, and its binding protein, follistatin, reduces mortality in endotoxemia[J]. Proc Natl Acad Sci U S A, 2007, 104(41):16239-16244.
doi: 10.1073/pnas.0705971104
[52] 姚淑东, 宋庆高, 邓金勇, 等. 硬腭骨膜牵张成骨过程中ACTA和FS的表达研究[J]. 实用口腔医学杂志, 2012, 28(1):34-38.
Yao SD, Song QG, Deng JY, et al. Expression of acti-vin A and follistatin in hard palate during periosteal distraction osteogenesis[J]. J Pract Stomatol, 2012, 28(1):34-38.
[53] 闫欣, 王明锋. 正畸牙齿移动过程中Follistatin在牙周组织中表达的动物实验研究[J]. 中国医药指南, 2020, 18(2):9.
Yan X, Wang MF. Animal experimental study on expression of follistatin in periodontal tissue during orthodontic tooth movement[J]. Guid China Med, 2020, 18(2):9.
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[3] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[4] Yang Xiaoyu,Yuan Quan.. Research progress on the role of extravascular fibrinogen deposition in mucosal diseases [J]. Int J Stomatol, 2023, 50(4): 457-462.
[5] Huang Dingming, Zhang Lan, Man Yi. Biologic bases of nature tooth-related maxillary sinus floor elevation [J]. Int J Stomatol, 2023, 50(3): 251-262.
[6] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[7] Xu Yanxue,Fu Li.. Research progress on functionally graded membranes for guided bone regeneration [J]. Int J Stomatol, 2023, 50(3): 353-358.
[8] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[9] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[10] Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42.
[11] Zhang Yuning,Zeng Ni,Zhang Bei,Shi Bing,Zheng Qian.. A preliminary study of the effect of posterior pharyngeal flap surgery on the maxillofacial growth of patients after palatoplasty [J]. Int J Stomatol, 2023, 50(1): 66-71.
[12] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[13] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[14] Zhang Shan,Ge Xiaolei,Li Jie,Xie Xinyu,Chang Weiwei,Ma Wensheng.. Meta-analysis of the long-term effect of maxillary protraction on jaw growth and development [J]. Int J Stomatol, 2022, 49(5): 548-555.
[15] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .