Int J Stomatol ›› 2021, Vol. 48 ›› Issue (5): 556-562.doi: 10.7518/gjkq.2021099
• Reviews • Previous Articles Next Articles
Liu Jiacheng1(),Meng Zhaosong2,Li Hongjie1,Sui Lei3()
CLC Number:
[1] |
Rajput SK, Yang C, Ashry M, et al. Role of bone morphogenetic protein signaling in bovine early embryonic development and stage specific embryotro-pic actions of follistatin[J]. Biol Reprod, 2020, 102(4):795-805.
doi: 10.1093/biolre/ioz235 |
[2] | Fang DY, Lu B, Hayward S, et al. The role of activin A and B and the benefit of follistatin treatment in renal ischemia-reperfusion injury in mice[J]. Transplant Direct, 2016, 2(7):e87. |
[3] |
Shi L, Resaul J, Owen S, et al. Clinical and therapeutic implications of follistatin in solid tumours[J]. Cancer Genomics Proteomics, 2016, 13(6):425-435.
doi: 10.21873/cgp |
[4] |
Shoji-Kasai Y, Ageta H, Hasegawa Y, et al. Activin increases the number of synaptic contacts and the length of dendritic spine necks by modulating spinal actin dynamics[J]. J Cell Sci, 2007, 120(Pt 21):3830-3837.
pmid: 17940062 |
[5] |
Walker RG, Poggioli T, Katsimpardi L, et al. Biochemistry and biology of GDF11 and myostatin: similarities, differences, and questions for future investigation[J]. Circ Res, 2016, 118(7):1125-1141, 1142.
doi: 10.1161/CIRCRESAHA.116.308391 pmid: 27034275 |
[6] |
Seachrist DD, Keri RA. The activin social network: activin, inhibin, and follistatin in breast development and cancer[J]. Endocrinology, 2019, 160(5):1097-1110.
doi: 10.1210/en.2019-00015 pmid: 30874767 |
[7] |
Zhang LD, Liu KL, Han B, et al. The emerging role of follistatin under stresses and its implications in diseases[J]. Gene, 2018, 639:111-116.
doi: 10.1016/j.gene.2017.10.017 |
[8] |
Schneyer AL, Wang QF, Sidis Y, et al. Differential distribution of follistatin isoforms: application of a new FS315-specific immunoassay[J]. J Clin Endocrinol Metab, 2004, 89(10):5067-5075.
doi: 10.1210/jc.2004-0162 |
[9] |
Patel K. Follistatin[J]. Int J Biochem Cell Biol, 1998, 30(10):1087-1093.
doi: 10.1016/S1357-2725(98)00064-8 |
[10] |
Hansen JS, Plomgaard P. Circulating follistatin in relation to energy metabolism[J]. Mol Cell Endocrinol, 2016, 433:87-93.
doi: 10.1016/j.mce.2016.06.002 |
[11] | Olsen OE, Hella H, Elsaadi S, et al. Activins as dual specificity TGF-β family molecules: SMAD-activation via activin- and BMP-type 1 receptors[J]. Biomolecules, 2020, 10(4):E519. |
[12] |
Nickel J, Mueller TD. Specification of BMP signa-ling[J]. Cells, 2019, 8(12):1579.
doi: 10.3390/cells8121579 |
[13] |
Wijayarathna R, de Kretser DM. Activins in reproductive biology and beyond[J]. Hum Reprod Update, 2016, 22(3):342-357.
doi: 10.1093/humupd/dmv058 pmid: 26884470 |
[14] |
Sidis Y, Mukherjee A, Keutmann H, et al. Biological activity of follistatin isoforms and follistatin-like-3 is dependent on differential cell surface binding and specificity for activin, myostatin, and bone morphogenetic proteins[J]. Endocrinology, 2006, 147(7):3586-3597.
doi: 10.1210/en.2006-0089 |
[15] |
Hashimoto O, Kawasaki N, Tsuchida K, et al. Difference between follistatin isoforms in the inhibition of activin signalling: activin neutralizing activity of follistatin isoforms is dependent on their affinity for activin[J]. Cell Signal, 2000, 12(8):565-571.
pmid: 11027950 |
[16] |
Wang XP, Suomalainen M, Jorgez CJ, et al. Follis-tatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation[J]. Dev Cell, 2004, 7(5):719-730.
doi: 10.1016/j.devcel.2004.09.012 |
[17] |
Ferguson CA, Tucker AS, Christensen L, et al. Activin is an essential early mesenchymal signal in too-th development that is required for patterning of the murine dentition[J]. Genes Dev, 1998, 12(16):2636-2649.
doi: 10.1101/gad.12.16.2636 |
[18] |
Li S, Pan Y. Immunolocalization of connective tissue growth factor, transforming growth factor-beta1 and phosphorylated-SMAD2/3 during the postnatal tooth development and formation of junctional epithelium[J]. Ann Anat, 2018, 216:52-59.
doi: 10.1016/j.aanat.2017.10.005 |
[19] |
Li JY, Feng JF, Liu Y, et al. BMP-SHH signaling network controls epithelial stem cell fate via regulation of its niche in the developing tooth[J]. Dev Cell, 2015, 33(2):125-135.
doi: 10.1016/j.devcel.2015.02.021 |
[20] |
Gao YR, Yang G, Weng TJ, et al. Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice[J]. Mol Cell Biol, 2009, 29(21):5941-5951.
doi: 10.1128/MCB.00706-09 |
[21] |
Liu J, Saito K, Maruya Y, et al. Mutant GDF5 enhan-ces ameloblast differentiation via accelerated BMP2-induced Smad1/5/8 phosphorylation[J]. Sci Rep, 2016, 6:23670.
doi: 10.1038/srep23670 |
[22] |
Fujiwara N, Lee JW, Kumakami-Sakano M, et al. Harmine promotes molar root development via SMAD1/5/8 phosphorylation[J]. Biochem Biophys Res Commun, 2018, 497(3):924-929.
doi: 10.1016/j.bbrc.2017.12.062 |
[23] |
Jani P, Liu C, Zhang H, et al. The role of bone morphogenetic proteins 2 and 4 in mouse dentinogenesis[J]. Arch Oral Biol, 2018, 90:33-39.
doi: 10.1016/j.archoralbio.2018.02.004 |
[24] |
Zhang R, Teng Y, Zhu L, et al. Odontoblast β-catenin signaling regulates fenestration of mouse Hertwig’s epithelial root sheath[J]. Sci China Life Sci, 2015, 58(9):876-881.
doi: 10.1007/s11427-015-4882-8 pmid: 26208822 |
[25] |
Cox TC, Lidral AC, McCoy JC, et al. Mutations in GDF11 and the extracellular antagonist, follistatin, as a likely cause of Mendelian forms of orofacial clefting in humans[J]. Hum Mutat, 2019, 40(10):1813-1825.
doi: 10.1002/humu.v40.10 |
[26] |
Gokoffski KK, Wu HH, Beites CL, et al. Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate[J]. Development, 2011, 138(19):4131-4142.
doi: 10.1242/dev.065870 pmid: 21852401 |
[27] |
Chu EY, Tamasas B, Fong H, et al. Full spectrum of postnatal tooth phenotypes in a novel Irf6 cleft lip model[J]. J Dent Res, 2016, 95(11):1265-1273.
doi: 10.1177/0022034516656787 pmid: 27369589 |
[28] |
Iwata J, Parada C, Chai Y. The mechanism of TGF-β signaling during palate development[J]. Oral Dis, 2011, 17(8):733-744.
doi: 10.1111/j.1601-0825.2011.01806.x pmid: 21395922 |
[29] |
Nomura M, Li E. Smad2 role in mesoderm formation, left-right patterning and craniofacial development[J]. Nature, 1998, 393(6687):786-790.
doi: 10.1038/31693 |
[30] |
Ko SO, Chung IH, Xu X, et al. Smad4 is required to regulate the fate of cranial neural crest cells[J]. Dev Biol, 2007, 312(1):435-447.
doi: 10.1016/j.ydbio.2007.09.050 |
[31] |
Inoue S, Nomura S, Hosoi T, et al. Localization of follistatin, an activin-binding protein, in bone tissues[J]. Calcif Tissue Int, 1994, 55(5):395-397.
doi: 10.1007/BF00299321 |
[32] |
Funaba M, Ogawa K, Murata T, et al. Follistatin and activin in bone: expression and localization during endochondral bone development[J]. Endocrinology, 1996, 137(10):4250-4259.
pmid: 8828484 |
[33] |
Glister C, Kemp CF, Knight PG. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin[J]. Reproduction, 2004, 127(2):239-254.
pmid: 15056790 |
[34] |
Fahmy-Garcia S, Farrell E, Witte-Bouma J, et al. Follistatin effects in migration, vascularization, and osteogenesis in vitro and bone repair in vivo[J]. Front Bioeng Biotechnol, 2019, 7:38.
doi: 10.3389/fbioe.2019.00038 |
[35] |
Abe Y, Abe T, Aida Y, et al. Follistatin restricts bone morphogenetic protein (BMP)-2 action on the diffe-rentiation of osteoblasts in fetal rat mandibular cells[J]. J Bone Miner Res, 2004, 19(8):1302-1307.
doi: 10.1359/JBMR.040408 |
[36] | Kim KM, Kim DY, Lee DS, et al. Peroxiredoxin Ⅱ negatively regulates BMP2-induced osteoblast differentiation and bone formation via PP2A Cα-media-ted Smad1/5/9 dephosphorylation[J]. Exp Mol Med, 2019, 51(6):1-11. |
[37] |
Choi H, Jeong BC, Kook MS, et al. Betulinic acid synergically enhances BMP2-induced bone formation via stimulating Smad 1/5/8 and p38 pathways[J]. J Biomed Sci, 2016, 23(1):45.
doi: 10.1186/s12929-016-0260-5 |
[38] |
Kajita T, Ariyoshi W, Okinaga T, et al. Mechanisms involved in enhancement of osteoclast formation by activin-A[J]. J Cell Biochem, 2018, 119(8):6974-6985.
doi: 10.1002/jcb.v119.8 |
[39] |
Wu MR, Chen GQ, Li YP. TGF-β and BMP signa-ling in osteoblast, skeletal development, and bone formation, homeostasis and disease[J]. Bone Res, 2016, 4:16009.
doi: 10.1038/boneres.2016.9 |
[40] |
Yaden BC, Croy JE, Wang Y, et al. Follistatin: a no-vel therapeutic for the improvement of muscle regeneration[J]. J Pharmacol Exp Ther, 2014, 349(2):355-371.
doi: 10.1124/jpet.113.211169 |
[41] | Giesige CR, Wallace LM, Heller KN, et al. AAV-mediated follistatin gene therapy improves functio-nal outcomes in the TIC-DUX4 mouse model of FSHD[J]. JCI Insight, 2018, 3(22):123538. |
[42] |
Mendell JR, Sahenk Z, Al-Zaidy S, et al. Follistatin gene therapy for sporadic inclusion body myositis improves functional outcomes[J]. Mol Ther, 2017, 25(4):870-879.
doi: S1525-0016(17)30092-8 pmid: 28279643 |
[43] |
Chen Y, Rothnie C, Spring D, et al. Regulation and actions of activin A and follistatin in myocardial is-chaemia-reperfusion injury[J]. Cytokine, 2014, 69(2):255-262.
doi: 10.1016/j.cyto.2014.06.017 pmid: 25052838 |
[44] |
Hardy CL, King SJ, Mifsud NA, et al. The activin A antagonist follistatin inhibits cystic fibrosis-like lung inflammation and pathology[J]. Immunol Cell Biol, 2015, 93(6):567-574.
doi: 10.1038/icb.2015.7 |
[45] |
Chang KP, Kao HK, Liang Y, et al. Overexpression of activin A in oral squamous cell carcinoma: association with poor prognosis and tumor progression[J]. Ann Surg Oncol, 2010, 17(7):1945-1956.
doi: 10.1245/s10434-010-0926-2 |
[46] |
Bufalino A, Cervigne NK, de Oliveira CE, et al. Low miR-143/miR-145 cluster levels induce activin A overexpression in oral squamous cell carcinomas, which contributes to poor prognosis[J]. PLoS One, 2015, 10(8):e0136599.
doi: 10.1371/journal.pone.0136599 |
[47] |
Ervolino De Oliveira C, Dourado MR, Sawazaki-Calone Í, et al. Activin A triggers angiogenesis via regulation of VEGFA and its overexpression is associated with poor prognosis of oral squamous cell carcinoma[J]. Int J Oncol, 2020, 57(1):364-376.
doi: 10.3892/ijo.2020.5058 pmid: 32377747 |
[48] |
Omar NN, Rashed RR, El-Hazek RM, et al. Platelet-rich plasma-induced feedback inhibition of activin A/follistatin signaling: a mechanism for tumor-low risk skin rejuvenation in irradiated rats[J]. J Photochem Photobiol B, 2018, 180:17-24.
doi: 10.1016/j.jphotobiol.2018.01.024 |
[49] |
Forrester HB, de Kretser DM, Leong T, et al. Follistatin attenuates radiation-induced fibrosis in a murine model[J]. PLoS One, 2017, 12(3):e0173788.
doi: 10.1371/journal.pone.0173788 |
[50] |
Hedger MP, Winnall WR, Phillips DJ, et al. The re-gulation and functions of activin and follistatin in inflammation and immunity[J]. Vitam Horm, 2011, 85:255-297.
doi: 10.1016/B978-0-12-385961-7.00013-5 pmid: 21353885 |
[51] |
Jones KL, Mansell A, Patella S, et al. Activin A is a critical component of the inflammatory response, and its binding protein, follistatin, reduces mortality in endotoxemia[J]. Proc Natl Acad Sci U S A, 2007, 104(41):16239-16244.
doi: 10.1073/pnas.0705971104 |
[52] | 姚淑东, 宋庆高, 邓金勇, 等. 硬腭骨膜牵张成骨过程中ACTA和FS的表达研究[J]. 实用口腔医学杂志, 2012, 28(1):34-38. |
Yao SD, Song QG, Deng JY, et al. Expression of acti-vin A and follistatin in hard palate during periosteal distraction osteogenesis[J]. J Pract Stomatol, 2012, 28(1):34-38. | |
[53] | 闫欣, 王明锋. 正畸牙齿移动过程中Follistatin在牙周组织中表达的动物实验研究[J]. 中国医药指南, 2020, 18(2):9. |
Yan X, Wang MF. Animal experimental study on expression of follistatin in periodontal tissue during orthodontic tooth movement[J]. Guid China Med, 2020, 18(2):9. |