Int J Stomatol ›› 2023, Vol. 50 ›› Issue (4): 457-462.doi: 10.7518/gjkq.2023060

• Reviews • Previous Articles     Next Articles

Research progress on the role of extravascular fibrinogen deposition in mucosal diseases

Yang Xiaoyu(),Yuan Quan.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2022-10-25 Revised:2023-02-16 Online:2023-07-01 Published:2023-06-21
  • Contact: Quan. Yuan E-mail:xiaoyu_yang1999@163.com;yuanquan@scu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(82125006)

Abstract:

Fibrinogen is a member of coagulation factors synthesized by liver, and it plays an important role in hemostasis. However, in the case of increased vascular permeability, fibrinogen extravasates and accumulates outside blood vessels. Recognized by integrin receptors on the cell surface, extravascular deposited fibrinogen acts as an immune regulator by mediating leukocyte engagement and activation. Current studies suggest the close association of fibrinogen extravascular deposition with a series of severe mucosal diseases, including oral lichen planus (OLP), oral leukoplakia (OLK), pe-riodontitis, conjunctivitis, and inflammation of digestive tract and lung. This association is indicated to be a potential target for clinical therapy. This article reviewed the recent research progress regarding the relationship between extravascular fibrinogen deposition and mucosal immunity to provide motivations for the development of novel therapeutic methods.

Key words: fibrinogen, mucosal immunity, inflammation

CLC Number: 

  • R 392.11

TrendMD: 
1 May JE, Wolberg AS, Lim MY. Disorders of fibrinogen and fibrinolysis[J]. Hematol Oncol Clin North Am, 2021, 35(6): 1197-1217.
2 Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation[J]. Blood, 2019, 133(6): 511-520.
3 Ertas U, Saruhan N, Gunhan O. Ligneous periodontitis in a child with plasminogen deficiency[J]. Niger J Clin Pract, 2017, 20(12): 1656-1658.
4 Vilar R, Fish RJ, Casini A, et al. Fibrin(ogen) in human disease: both friend and foe[J]. Haematologica, 2020, 105(2): 284-296.
5 Flick MJ, LaJeunesse CM, Talmage KE, et al. Fibrin(ogen) exacerbates inflammatory joint disease throu-gh a mechanism linked to the integrin αMβ2 binding motif[J]. J Clin Invest, 2007, 117(11): 3224-3235.
6 Petersen MA, Ryu JK, Akassoglou K. Fibrinogen in neurological diseases: mechanisms, imaging and the-rapeutics[J]. Nat Rev Neurosci, 2018, 19(5): 283-301.
7 Nasimuzzaman M, Arumugam PI, Mullins ES, et al. Elimination of the fibrinogen integrin αMβ2-binding motif improves renal pathology in mice with sickle cell anemia[J]. Blood Adv, 2019, 3(9): 1519-1532.
8 Silva LM, Doyle AD, Greenwell-Wild T, et al. Fibrin is a critical regulator of neutrophil effector fu-nction at the oral mucosal barrier[J]. Science, 2021, 374(6575): eabl5450.
9 Ryu JK, Rafalski VA, Meyer-Franke A, et al. Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration[J]. Nat Immunol, 2018, 19(11): 1212-1223.
10 Bach TL, Barsigian C, Yaen CH, et al. Endothelial cell VE-cadherin functions as a receptor for the beta15-42 sequence of fibrin[J]. J Biol Chem, 1998, 273(46): 30719-30728.
11 Yakovlev S, Mikhailenko I, Cao CZ, et al. Identification of VLDLR as a novel endothelial cell receptor for fibrin that modulates fibrin-dependent transendothelial migration of leukocytes[J]. Blood, 2012, 119(2): 637-644.
12 Schiødt M, Holmstrup P, Dabelsteen E, et al. Depo-sits of immunoglobulins, complement, and fibrinogen in oral lupus erythematosus, lichen planus, and leukoplakia[J]. Oral Surg Oral Med Oral Pathol, 1981, 51(6): 603-608.
13 于世凤, 魏明洁, 庞淑珍. 纤维蛋白原直接免疫荧光技术对口腔粘膜病的鉴别诊断[J]. 中华口腔医学杂志, 1989, 24(1): 22-23.
Yu SF, Wei MJ, Pang SZ. Differential diagnosis of oral mucosal diseases by fibrinogen direct immunofluorescence technique[J]. Chin J Stomatol, 1989, 24(1): 22-23.
14 Shirol PD, Naik V, Kale A. Fibrinogen demonstration in oral lichen planus: an immunofluorescence study on archival tissues[J]. J Contemp Dent Pract, 2015, 16(10): 824-828.
15 Yamanaka Y, Yamashita M, Innocentini LMA, et al. Direct immunofluorescence as a helpful tool for the differential diagnosis of oral lichen planus and oral lichenoid lesions[J]. Am J Dermatopathol, 2018, 40(7): 491-497.
16 杨芯蕊. 肥大细胞和纤维蛋白原在口腔扁平苔藓和修复体相关口腔苔藓样接触性病变病损组织中的表达[D]. 沈阳: 中国医科大学, 2021.
Yang XR. The expression of mast cells and fibrinogen in oral lichen planus and restoration-associated oral lichenoid contact lesions[D]. Shenyang: China Medical University, 2021.
17 Helander SD, Rogers RS 3rd. The sensitivity and specificity of direct immunofluorescence testing in disorders of mucous membranes[J]. J Am Acad Dermatol, 1994, 30(1): 65-75.
18 葛颂, 吴亚菲, 刘天佳, 等. 纤维蛋白原对牙龈卟啉单胞菌黏附口腔上皮细胞的影响[J]. 中华口腔医学杂志, 2006, 41(2): 69-72.
Ge S, Wu YF, Liu TJ, et al. Effect of fibrinogen on the adherence of Porphyromonas gingivalis to human oral epithelial cells[J]. Chin J Stomatol, 2006, 41(2): 69-72.
19 MacPherson M, Pho M, Cox J, et al. Ligneous gingivitis secondary to plasminogen deficiency: a multidisciplinary diagnostic challenge[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2020, 130(3): e87-e95.
20 Munz M, Richter GM, Loos BG, et al. Meta-analysis of genome-wide association studies of aggressive and chronic periodontitis identifies two novel risk loci[J]. Eur J Hum Genet, 2019, 27(1): 102-113.
21 Kwaan HC, Lindholm PF. Fibrin and fibrinolysis in cancer[J]. Semin Thromb Hemost, 2019, 45(4): 413-422.
22 Yakovlev S, Medved L. Dual functions of the fibrin βN-domains in the VLDL receptor-dependent pathway of transendothelial migration of leukocytes[J]. Thromb Res, 2022, 214: 1-7.
23 Montague LJ, Bhattacharyya I, Islam MN, et al. Direct immunofluorescence testing results in cases of premalignant and malignant oral lesions[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2015, 119(6): 675-683.
24 Chu HW, Chang KP, Hsu CW, et al. Identification of salivary biomarkers for oral cancer detection with untargeted and targeted quantitative proteomics approaches[J]. Mol Cell Proteomics, 2019, 18(9): 1796-1806.
25 Lalla RV, Goralnick SJ, Tanzer ML, et al. Fibrin induces IL-8 expression from human oral squamous cell carcinoma cells[J]. Oral Oncol, 2001, 37(3): 234-242.
26 梁笑楠, 尹凤荣, 张晓岚. 炎症性肠病诊断与治疗的共识意见(2018年,北京)溃疡性结肠炎部分解读[J]. 临床荟萃, 2018, 33(11): 987-990.
Liang XN, Yin FR, Zhang XL. Consensus on diagnosis and treatment of inflammatory bowel disease (Beijing, 2018) interpretation of ulcerative colitis[J]. Clinical Focus, 2018, 33(11): 987-990.
27 More L, Sim R, Hudson M, et al. Immunohistochemical study of tissue factor expression in normal intestine and idiopathic inflammatory bowel disease[J]. J Clin Pathol, 1993, 46(8): 703-708.
28 Steinbrecher KA, Horowitz NA, Blevins EA, et al. Colitis-associated cancer is dependent on the interplay between the hemostatic and inflammatory systems and supported by integrin αMβ2 engagement of fibrinogen[J]. Cancer Res, 2010, 70(7): 2634-2643.
29 Zhang C, Chen HL, He QL, et al. Fibrinogen/AKT/microfilament axis promotes colitis by enhancing vascular permeability[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(3): 683-696.
30 Soomro S, Venkateswaran S, Vanarsa K, et al. Predicting disease course in ulcerative colitis using stool proteins identified through an aptamer-based screen[J]. Nat Commun, 2021, 12(1): 3989.
31 Sharma B, Kudira R, Rosenfeldt LA, et al. Fibrin(ogen) promotes immune cell infiltration, dysbiosis and ros production in experimental colitis[J]. Blood, 2021, 138: 443-444.
32 Lepsenyi M, Algethami N, Al-Haidari AA, et al. CXCL2-CXCR2 axis mediates αV integrin-dependent peritoneal metastasis of colon cancer cells[J]. Clin Exp Metastasis, 2021, 38(4): 401-410.
33 Presterl E, Wagner L, Base W. Hypofibrinogenemia due to fibrin formation in subserosal type eosinop-hilic gastroenteropathy[J]. Clin Investig, 1992, 70(6): 513-516.
34 Wang JR, Pathak R, Garg S, et al. Fibrinogen deficiency suppresses the development of early and delayed radiation enteropathy[J]. World J Gastroente-rol, 2017, 23(26): 4701-4711.
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[3] Huang Dingming, Zhang Lan, Man Yi. Biologic bases of nature tooth-related maxillary sinus floor elevation [J]. Int J Stomatol, 2023, 50(3): 251-262.
[4] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[5] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[6] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[7] Li Guiping,Qin Xu,Zhu Guangxun.. Research progress on adenosine monophosphate-activated protein kinase in periodontal disease [J]. Int J Stomatol, 2022, 49(3): 343-348.
[8] Jiang Duan,Shen Daonan,Zhao Lei,Wu Yafei. Research progress on the relationship between new anti-inflammatory factor developmental endothelial locus-1 and periodontitis [J]. Int J Stomatol, 2022, 49(2): 244-248.
[9] Zhou Yi,Zhao Yuming. Research progress on various dental pulp regeneration scaffolds [J]. Int J Stomatol, 2022, 49(1): 19-26.
[10] Liu Jiacheng,Meng Zhaosong,Li Hongjie,Sui Lei. The role of follistatin in oral and maxillofacial development and its therapeutic application prospect [J]. Int J Stomatol, 2021, 48(5): 556-562.
[11] Zhou Feng,Chen Ye,Chen Chen,Zhang Yining,Geng Ruiman,Liu Ji. Mechanism of sirtuin 1 in regulating periodontitis [J]. Int J Stomatol, 2021, 48(3): 341-346.
[12] Wen Shuqiong,Guo Junyi,Dai Wenxiao,Wang Dikan,Wang Zhi. Research progress on the mechanism of Candida albicans in oral carcinogenesis [J]. Int J Stomatol, 2019, 46(6): 705-710.
[13] Yao Wang,Huixin Lü,Liuyi Du,Xinming Gu,Jingyi Ren,Weixian Yu,Yanmin Zhou. Roles of leptomeninges in the effect of chronic peripheral inflammation on neuroinflammation [J]. Inter J Stomatol, 2019, 46(2): 223-227.
[14] Zhan Yeming, Zhang Mingzhu. Research progress on the relevance between drug-induced gingival overgrowth and cell proliferation and apoptosis [J]. Inter J Stomatol, 2018, 45(2): 199-203.
[15] Li Lin, Wang Dan, Zhao Manzhu, Tang Ming. Research progress on the correlation between chronic periodontitis and neurodegenerative diseases [J]. Inter J Stomatol, 2017, 44(5): 514-518.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .