Int J Stomatol ›› 2023, Vol. 50 ›› Issue (4): 463-471.doi: 10.7518/gjkq.2023064
• Reviews • Previous Articles Next Articles
Yu Lerong1(),Li Xiangwei1(),Ai Hong2
CLC Number:
1 | Cui DX, Li HY, Wan M, et al. The origin and identification of mesenchymal stem cells in teeth: from odontogenic to non-odontogenic[J]. Curr Stem Cell Res Ther, 2018, 13(1): 39-45. |
2 | Ogata K, Moriyama M, Matsumura-Kawashima M, et al. The therapeutic potential of secreted factors from dental pulp stem cells for various diseases[J]. Biomedicines, 2022, 10(5): 1049. |
3 | Zhang JL, Lu XH, Feng GJ, et al. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy[J]. Cell Tissue Res, 2016, 366(1): 129-142. |
4 | Shimojima C, Takeuchi H, Jin SJ, et al. Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis[J]. J Immunol, 2016, 196(10): 4164-4171. |
5 | Ullah I, Park JM, Kang YH, et al. Transplantation of human dental pulp-derived stem cells or differentia-ted neuronal cells from human dental pulp-derived stem cells identically enhances regeneration of the injured peripheral nerve[J]. Stem Cells Dev, 2017, 26(17): 1247-1257. |
6 | Fernandes TL, Shimomura K, Asperti A, et al. Development of a novel large animal model to eva-luate human dental pulp stem cells for articular cartilage treatment[J]. Stem Cell Rev Rep, 2018, 14(5): 734-743. |
7 | Syed-Picard FN, Du YQ, Lathrop KL, et al. Dental pulp stem cells: A new cellular resource for corneal stromal regeneration[J]. Stem Cells Transl Med, 2015, 4(3): 276-285. |
8 | Datta I, Bhadri N, Shahani P, et al. Functional reco-very upon human dental pulp stem cell transplantation in a diabetic neuropathy rat model[J]. Cytothe-rapy, 2017, 19(10): 1208-1224. |
9 | Barros MA, Martins JF, Maria DA, et al. Immature dental pulp stem cells showed renotropic and pericyte-like properties in acute renal failure in rats[J]. Cell Med, 2015, 7(3): 95-108. |
10 | Cao XF, Jin SZ, Sun L, et al. Therapeutic effects of hepatocyte growth factor-overexpressing dental pulp stem cells on liver cirrhosis in a rat model[J]. Sci Rep, 7(1): 15812. |
11 | 贺莹. 体外连续培养人牙髓干细胞干性特征改变的相关研究[D]. 西安: 第四军医大学, 2015. |
He Y. Changing of stemness during serial passage of hDPSCs in vitro [D]. Xi’an: The Fourth Military Medical University, 2015. | |
12 | Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676. |
13 | Ferro F, Spelat R, D’Aurizio F, et al. Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics[J]. PLoS One, 2012, 7(7): e41774. |
14 | Liu L, Wei X, Ling JQ, et al. Expression pattern of Oct-4, Sox2, and c-Myc in the primary culture of human dental pulp derived cells[J]. J Endod, 2011, 37(4): 466-472. |
15 | Rodas-Junco BA, Villicaña C. Dental pulp stem cells: current advances in isolation, expansion and preservation[J]. Tissue Eng Regen Med, 2017, 14(4): 333-347. |
16 | Pilbauerová N, Soukup T, Suchánková Kleplová T, et al. Enzymatic isolation, amplification and characterization of dental pulp stem cells[J]. Folia Biol (Praha), 2019, 65(3): 124-133. |
17 | Huynh NC, Le SH, Doan VN, et al. Simplified conditions for storing and cryopreservation of dental pulp stem cells[J]. Arch Oral Biol, 2017, 84: 74-81. |
18 | Pilbauerova N, Schmidt J, Soukup T, et al. The effects of cryogenic storage on human dental pulp stem cells[J]. Int J Mol Sci, 2021, 22(9): 4432. |
19 | Lee SY, Huang GW, Shiung JN, et al. Magnetic cryopreservation for dental pulp stem cells[J]. Cells Tissues Organs, 2012, 196(1): 23-33. |
20 | Gioventù S, Andriolo G, Bonino F, et al. A novel method for banking dental pulp stem cells[J]. Transfus Apher Sci, 2012, 47(2): 199-206. |
21 | Yan M, Nada OA, Kluwe L, et al. Expansion of human dental pulp cells in vitro under different cryopreservation conditions[J]. In Vivo, 2020, 34(5): 2363-2370. |
22 | Wang W, Yan M, Aarabi G, et al. Cultivation of cryopreserved human dental pulp stem cells-a new approach to maintaining dental pulp tissue[J]. Int J Mol Sci, 2022, 23(19): 11485. |
23 | Shuai Y, Liao L, Su XX, et al. Melatonin treatment improves mesenchymal stem cells therapy by preserving stemness during long-term in vitro expansion[J]. Theranostics, 2016, 6(11): 1899-1917. |
24 | Yin QL, Xu N, Xu DS, et al. Comparison of senescence-related changes between three- and two-dimensional cultured adipose-derived mesenchymal stem cells[J]. Stem Cell Res Ther, 2020, 11(1): 226. |
25 | Zhang SY, Buttler-Buecher P, Denecke B, et al. A comprehensive analysis of human dental pulp cell spheroids in a three-dimensional pellet culture system[J]. Arch Oral Biol, 2018, 91: 1-8. |
26 | Ryu NE, Lee SH, Park H. Spheroid culture system methods and applications for mesenchymal stem cells[J]. Cells, 2019, 8(12): 1620. |
27 | Cesarz Z, Tamama K. Spheroid culture of mesenchymal stem cells[J]. Stem Cells Int, 2016, 2016: 1-11. |
28 | Tietze S, Kräter M, Jacobi A, et al. Spheroid culture of mesenchymal stromal cells results in morphor-heological properties appropriate for improved microcirculation[J]. Adv Sci (Weinh), 2019, 6(8):1802104. |
29 | Chan YH, Lee YC, Hung CY, et al. Three-dimensional spheroid culture enhances multipotent diffe-rentiation and stemness capacities of human dental pulp-derived mesenchymal stem cells by modula-ting MAPK and NF-kB signaling pathways[J]. Stem Cell Rev Rep, 2021, 17(5): 1810-1826. |
30 | 李驰宇, 郭雨薇, 纳静, 等. 细胞形状调控人牙髓干细胞干性维持及其机制研究[J]. 医用生物力学, 2021, 36(S1): 1. |
Li CY, Guo YW, Na J, et al. Mechanism research on regulating stemness of human dental pulp stem cells by cell shape[J]. J Med Biomechan, 2021, 36(S1): 1. | |
31 | Yu CY, Boyd NM, Cringle SJ, et al. Oxygen distribution and consumption in rat lower incisor pulp[J]. Arch Oral Biol, 2002, 47(7): 529-536. |
32 | Estrada JC, Albo C, Benguría A, et al. Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis[J]. Cell Death Differ, 2012, 19(5): 743-755. |
33 | Laksana K, Sooampon S, Pavasant P, et al. Cobalt chloride enhances the stemness of human dental pulp cells[J]. J Endod, 2017, 43(5): 760-765. |
34 | Chen YJ, Zhao Q, Yang X, et al. Effects of cobalt chloride on the stem cell marker expression and osteogenic differentiation of stem cells from human exfoliated deciduous teeth[J]. Cell Stress Chaperones, 2019, 24(3): 527-538. |
35 | Bhandi S, Al Kahtani A, Mashyakhy M, et al. Modulation of the dental pulp stem cell secretory profile by hypoxia induction using cobalt chloride[J]. J Pers Med, 2021, 11(4): 247. |
36 | Meng HF, Wei F, Ge ZQ, et al. Long-term hypoxia inhibits the passage-dependent stemness decrease and senescence increase of human dental pulp stem cells[J]. Tissue Cell, 2022, 76: 101819. |
37 | Zhou YH, Fan W, Xiao Y. The effect of hypoxia on the stemness and differentiation capacity of PDLC and DPC[J]. Biomed Res Int, 2014, 2014: 890675. |
38 | Iida K, Takeda-Kawaguchi T, Tezuka Y, et al. Hypoxia enhances colony formation and proliferation but inhibits differentiation of human dental pulp cells[J]. Arch Oral Biol, 2010, 55(9): 648-654. |
39 | Ahmed NE, Murakami M, Kaneko S, et al. The effects of hypoxia on the stemness properties of human dental pulp stem cells (DPSCs)[J]. Sci Rep, 2016, 6: 35476. |
40 | Mossahebi-Mohammadi M, Quan MY, Zhang JS, et al. FGF signaling pathway: a key regulator of stem cell pluripotency[J]. Front Cell Dev Biol, 2020, 8: 79. |
41 | Shimabukuro Y, Ueda M, Ozasa M, et al. Fibroblast growth factor-2 regulates the cell function of human dental pulp cells[J]. J Endod, 2009, 35(11): 1529-1535. |
42 | Yang JW, Zhang YF, Sun ZY, et al. Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds[J]. J Biomater Appl, 2015, 30(2): 221-229. |
43 | Tsutsumi S, Shimazu A, Miyazaki K, et al. Retention of multilineage differentiation potential of me-senchymal cells during proliferation in response to FGF[J]. Biochem Biophys Res Commun, 2001, 288(2): 413-419. |
44 | Morito A, Kida Y, Suzuki K, et al. Effects of basic fibroblast growth factor on the development of the stem cell properties of human dental pulp cells[J]. Arch Histol Cytol, 2009, 72(1): 51-64. |
45 | Jauković A, Kukolj T, Trivanović D, et al. Modula-ting stemness of mesenchymal stem cells from exfoliated deciduous and permanent teeth by IL-17 and bFGF[J]. J Cell Physiol, 2021, 236(11): 7322-7341. |
46 | Osathanon T, Nowwarote N, Pavasant P. Basic fibroblast growth factor inhibits mineralization but indu-ces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCγ signaling pathway[J]. J Cell Biochem, 2011, 112(7): 1807-1816. |
47 | Qian J, Jiayuan W, Wenkai J, et al. Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner[J]. Int Endod J, 2015, 48(7): 690-700. |
48 | Fakhry A, Ratisoontorn C, Vedhachalam C, et al. Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential[J]. Bone, 2005, 36(2): 254-266. |
49 | Mullen AC, Wrana JL. TGF-β family signaling in embryonic and somatic stem-cell renewal and diffe-rentiation[J]. Cold Spring Harb Perspect Biol, 2017, 9(7): a022186. |
50 | Salkın H, Gönen ZB, Ergen E, et al. Effects of TGF-β1 overexpression on biological characteristics of human dental pulp-derived mesenchymal stromal cells[J]. Int J Stem Cells, 2019, 12(1): 170-182. |
51 | Yamasaki S, Taguchi Y, Shimamoto A, et al. Generation of human induced pluripotent stem (Ips) cells in serum- and feeder-free defined culture and TGF-Β1 regulation of pluripotency[J]. PLoS One, 2014, 9(1): e87151. |
52 | 熊梦琳, 吴龙, 马丽, 等. 转化生长因子-β2促进牙髓干细胞增殖和分化的作用研究[J]. 国际口腔医学杂志, 2021, 48(6): 635-639. |
Xiong ML, Wu L, Ma L, et al. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells[J]. Int J Stomatol, 2021, 48(6): 635-639. | |
53 | Liu L, Wu LJ, Wei X, et al. Induced overexpression of Oct4A in human dental pulp cells enhances pluripotency and multilineage differentiation capability[J]. Stem Cells Dev, 2015, 24(8): 962-972. |
54 | Zhang XF, Zhang J, Wang T, et al. Esrrb activates Oct4 transcription and sustains self-renewal and pluripotency in embryonic stem cells[J]. J Biol Chem, 2008, 283(51): 35825-35833. |
55 | Huang C, Hu FW, Yu CH, et al. Concurrent expression of Oct4 and Nanog maintains mesenchymal stem-like property of human dental pulp cells[J]. Int J Mol Sci, 2014, 15(10): 18623-18639. |
56 | Hara ES, Ono M, Eguchi T, et al. miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells[J]. PLoS One, 2013, 8(12): e83545. |
57 | Sun DG, Xin BC, Wu D, et al. miR-140-5p-media-ted regulation of the proliferation and differentiation of human dental pulp stem cells occurs through the lipopolysaccharide/toll-like receptor 4 signaling pa-thway[J]. Eur J Oral Sci, 2017, 125(6): 419-425. |
58 | Qiu ZL, Lin SH, Hu XG, et al. Involvement of miR-146a-5p/neurogenic locus notch homolog protein 1 in the proliferation and differentiation of STRO-1+ human dental pulp stem cells[J]. Eur J Oral Sci, 2019, 127(4): 294-303. |
59 | 吕红兵, 郑碧琼, 雷丽珊, 等. 人牙髓干细胞及非牙髓干细胞中微小RNA表达谱比较研究[J]. 中国实用口腔科杂志, 2014, 7(3): 146-150. |
Lü HB, Zheng BQ, Lei LS, et al. Comparison of miRNAs expression profiles between human dental pulp stem cells and non-stem cells[J]. Chin J Pract Stomatol, 2014, 7(3): 146-150. | |
60 | Li JD, Rao ZL, Zhao YM, et al. A decellularized matrix hydrogel derived from human dental pulp promotes dental pulp stem cell proliferation, migration, and induced multidirectional differentiation in vitro [J]. J Endod, 2020, 46(10): 1438-1447.e5. |
61 | Niloy KK, Gulfam M, Compton KB, et al. Methacrylated hyaluronic acid-based hydrogels maintain stemness in human dental pulp stem cells[J]. Regen Eng Transl Med, 2020, 6(3): 262-272. |
62 | Zhang LL, Xia DS, Wang C, et al. Pleiotrophin attenuates the senescence of dental pulp stem cells[J]. Oral Dis, 2023, 29(1): 195-205. |
63 | Al-Habib M, Yu ZD, Huang GT. Small molecules affect human dental pulp stem cell properties via multiple signaling pathways[J]. Stem Cells Dev, 2013, 22(17): 2402-2413. |
64 | Lin CY, Chin YT, Kuo PJ, et al. 2, 3, 5, 4’-tetrahydroxystilbene-2-O‑β‑glucoside potentiates self-renewal of human dental pulp stem cells via the AMPK/ERK/SIRT1 axis[J]. Int Endod J, 2018, 51(10): 1159-1170. |
65 | Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development[J]. Science, 1999, 284(5415): 770-776. |
66 | Zhang C, Chang J, Sonoyama W, et al. Inhibition of human dental pulp stem cell differentiation by Notch signaling[J]. J Dent Res, 2008, 87(3): 250-255. |
67 | Wang XF, He F, Tan YH, et al. Inhibition of Delta1 promotes differentiation of odontoblasts and inhibits proliferation of human dental pulp stem cell in vitro [J]. Arch Oral Biol, 2011, 56(9): 837-845. |
68 | 关丽娜. 低氧环境下Notch信号通路对人牙髓干细胞增殖和分化的影响[D]. 西安: 第四军医大学, 2015. |
Guan LN. Effects of Notch signaling pathway on human dental pulp stem cells’ proliferation and diffe-rentiation in the hypoxia environment[D]. Xi’an: The Fourth Military Medical University, 2015. | |
69 | Reya T, Clevers H. Wnt signalling in stem cells and cancer[J]. Nature, 2005, 434(7035): 843-850. |
70 | Uribe-Etxebarria V, Agliano A, Unda F, et al. Wnt signaling reprograms metabolism in dental pulp stem cells[J]. J Cell Physiol, 2019, 234(8): 13068-13082. |
71 | Kornsuthisopon C, Photichailert S, Nowwarote N, et al. Wnt signaling in dental pulp homeostasis and dentin regeneration[J]. Arch Oral Biol, 2022, 134: 105322. |
72 | Uribe-Etxebarria V, Cell Biology and Histology Department Faculty of Medicine and Nursing University of the Basque Country (UPV/EHU) Barrio Sarriena S/N Leioa Spain, Luzuriaga J, et al. Notch/Wnt cross-signalling regulates stemness of dental pulp stem cells through expression of neural crest and core pluripotency factors[J]. ECM, 2017, 34: 249-270. |
73 | Sato N, Meijer L, Skaltsounis L, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor[J]. Nat Med, 2004, 10(1): 55-63. |
74 | Chang YC, Chang MC, Chen YJ, et al. Basic fibroblast growth factor regulates gene and protein expression related to proliferation, differentiation, and matrix production of human dental pulp cells[J]. J Endod, 2017, 43(6): 936-942. |
75 | Luo LH, Zhang YN, Chen HY, et al. Effects and mechanisms of basic fibroblast growth factor on the proliferation and regenerative profiles of cryopreserved dental pulp stem cells[J]. Cell Prolif, 2021, 54(2): e12969. |
76 | Liu F, Huang X, Luo ZH, et al. Hypoxia-activated PI3K/Akt inhibits oxidative stress via the regulation of reactive oxygen species in human dental pulp cells[J]. Oxid Med Cell Longev, 2019, 2019: 659-5189. |
77 | Skandalis SS, Karalis TT, Chatzopoulos A, et al. Hyaluronan-CD44 axis orchestrates cancer stem cell functions[J]. Cell Signal, 2019, 63: 109377. |
78 | Umemura N, Ohkoshi E, Tajima M, et al. Hyaluronan induces odontoblastic differentiation of dental pulp stem cells via CD44[J]. Stem Cell Res Ther, 2016, 7(1): 135. |
79 | Zhang WW, Shen JL, Zhang S, et al. Silencing integrin α6 enhances the pluripotency-differentiation transition in human dental pulp stem cells[J]. Oral Dis, 2022, 28(3): 711-722. |
80 | Cucco C, Zhang ZC, Botero TM, et al. SCF/C-kit signaling induces self-renewal of dental pulp stem cells[J]. J Endod, 2020, 46(9S): S56-S62. |
[1] | Fu Hengyi,Wang Chenglin. Research progress on serum-free culture methods of human dental pulp stem cells and cell characterization [J]. Int J Stomatol, 2022, 49(2): 220-226. |
[2] | Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639. |
[3] | Yang Maobin1, Zeng Qian2. Regenerative endodontics: a new treatment modality for pulp regeneration [J]. Inter J Stomatol, 2016, 43(5): 495-499. |