Int J Stomatol ›› 2021, Vol. 48 ›› Issue (6): 635-639.doi: 10.7518/gjkq.2021111

• Original Articles • Previous Articles     Next Articles

Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells

Xiong Menglin1,2(),Wu Long1,2,Ma Li1,2,Zhao Jin1,2()   

  1. 1. Dept. of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University(The Affiliated Stomatological Hospital of Xinjiang Medical University, Urumqi 830054, China
    2. Stomatological Disease Institute of Xinjiang Uyghur Autonomous Region, Urumqi 830054, China
  • Received:2021-02-05 Revised:2021-06-02 Online:2021-11-01 Published:2021-10-28
  • Contact: Jin Zhao E-mail:181099496@qq.com;merryljin@sina.com
  • Supported by:
    Natural Science Foundation of Xinjiang Uygur Autonomous Region(2020D01C253)

Abstract:

Objective This work explores the effect of transforming growth factor-β2 (TGF-β2) on the proliferation and differentiation of dental pulp stem cells (DPSCs). Methods DPSCs were isolated, cultured, and randomly divided into negative control, positive control, and TGF-β2 groups. Tetramethylazoazole colorimetric method (MTT) was used to detect cell viability, and alkaline phosphatase (ALP) activity assay kit was applied to measure intracellular ALP activity. Western blot method was employed to detect Runt-related transcription factor 2 (Runx2), bone sialoprotein (BSP), and osteopontin (OPN) protein expression. Immunohistochemical staining was conducted to detect Runx2 positive expression. Results Compared with the positive control group, DPSCs activity continued to increase, intracellular ALP activity was up-regulated, Runx2, BSP, and OPN protein expression levels were increased, and Runx2 positive expression was increased after 3, 7, and 10 days of TGF-β2 treatment (P<0.05). Conclusion TGF-β2 can promote the proliferation and osteogenic differentiation of DPSCs.

Key words: transforming growth factor-β2, dental pulp stem cells, proliferation, differentiation

CLC Number: 

  • R781

TrendMD: 

Fig 1

Cell morphology of the fourth-generation DPSCs on day 3 inverted fluorescence microscope × 200"

Tab 1

Effect of TGF-β2 on the proliferation of DPSCs $\bar{x}±s$,n=3"

培养
时间/d
OD490 F P
阴性对照组 阳性对照组 TGF-β2组
1 0.31±0.02 0.30±0.06 0.38±0.03 0.951 0.438
3 0.47±0.02 0.65±0.03* 0.68±0.07*# 18.600 0.003
7 0.77±0.05 1.35±0.08* 1.75±0.08*# 144.050 <0.000 1
10 1.13±0.03 1.53±0.08* 1.82±0.06*# 103.170 <0.000 1

Tab 2

Effect of TGF-β2 on ALP activity of DPSCs x ?±s,n=3"

培养
时间/d
OD520 F P
阴性对照组 阳性对照组 TGF-β2组
1 10.23±1.29 9.59±0.33 10.50±0.76 0.84 0.476 9
3 12.78±0.51 15.30±1.78* 19.12±0.32*# 19.97 0.002 2
7 13.00±0.19 24.62±1.75* 38.17±2.69*# 138.12 <0.000 1
10 23.55±2.42 45.39±1.48* 54.12±3.60*# 106.22 <0.000 1

Fig 2

Runx2, BSP and OPN protein expression of DPSCs"

Tab 3

Effect of TGF-β2 on the expression of Runx2, BSP and OPN protein of DPSCs x ?±s,n=3"

检测
蛋白
蛋白相对表达量 F P
阴性对照组 阳性对照组 TGF-β2组
Runx2 0.18±0.02 0.54±0.03* 0.71±0.07*# 114.54 <0.0001
BSP 0.22±0.04 0.69±0.06* 0.92±0.08*# 105.55 <0.0001
OPN 0.18±0.03 0.37±0.04* 0.51±0.04*# 67.83 <0.0001

Fig 3

Runx2 expression of DPSCs immunohistochemical staining × 200"

[1] Yusof MFH, Zahari W, Hashim SNM, et al. Angiogenic and osteogenic potentials of dental stem cells in bone tissue engineering[J]. J Oral Biol Craniofacial Res, 2018, 8(1):48-53.
doi: 10.1016/j.jobcr.2017.10.003
[2] 仵韩, 木合塔尔·霍加 . 转化生长因子-β诱导牙髓干细胞成骨向分化的研究进展[J]. 中华实用诊断与治疗杂志, 2017, 31(11):1128-1130.
Wu H, Muhetaer HJ. Advances in osteogenic dif-ferentiation of dental pulp stem cells induced by transforming growth factor-β[J]. J Chin Pract Diagn Ther, 2017, 31(11):1128-1130.
[3] Salkın H, Gönen ZB, Ergen E, et al. Effects of TGF-β1 overexpression on biological characteristics of hu-man dental pulp-derived mesenchymal stromal cells[J]. Int J Stem Cells, 2019, 12(1):170-182.
doi: 10.15283/ijsc18051 pmid: 30595006
[4] Hara Y, Ghazizadeh M, Shimizu H, et al. Delayed expression of circulating TGF-β1 and BMP-2 levels in human nonunion long bone fracture healing[J]. J Nippon Med Sch, 2017, 84(1):12-18.
doi: 10.1272/jnms.84.12
[5] Verrecchia F, Rédini F. Transforming growth factor-β signaling plays a pivotal role in the interplay between osteosarcoma cells and their microenvironment[J]. Front Oncol, 2018, 8:133.
doi: 10.3389/fonc.2018.00133 pmid: 29761075
[6] Deng MY, Mei TN, Hou TY, et al. TGFβ3 recruits endogenous mesenchymal stem cells to initiate bone regeneration[J]. Stem Cell Res Ther, 2017, 8:258.
doi: 10.1186/s13287-017-0693-0
[7] Huang LJ, Yi LX, Zhang CL, et al. Synergistic effects of FGF-18 and TGF-β3 on the chondrogenesis of human adipose-derived mesenchymal stem cells in the pellet culture[J]. Stem Cells Int, 2018, 2018:1-10.
[8] Kalinichenko SG, Matveeva NY, Kostiv RE, et al. Role of vascular endothelial growth factor and transforming growth factor-β2 in rat bone tissue after bone fracture and placement of titanium implants wi-th bioactive bioresorbable coatings[J]. Bull Exp Biol Med, 2017, 162(5):671-675.
doi: 10.1007/s10517-017-3684-3
[9] 卢金金, 刘欣辰, 周怡君, 等. 牙髓干细胞在软组织再生和修复中的研究进展[J]. 海南医学, 2019, 30(13):1752-1755.
Lu JJ, Liu XC, Zhou YJ, et al. Research progress of dental pulp stem cells in soft tissue regeneration and repair[J]. Hainan Med J, 2019, 30(13):1752-1755.
[10] Dole NS, Mazur CM, Acevedo C, et al. Osteocyte-intrinsic TGF-β signaling regulates bone quality through perilacunar/canalicular remodeling[J]. Cell Rep, 2017, 21(9):2585-2596.
doi: 10.1016/j.celrep.2017.10.115
[11] 王腾, 木合塔尔·霍加, 李军 . 转化生长因子β3联合牙髓干细胞在种植体骨结合中作用的实验研究[J]. 中华口腔医学杂志, 2017, 52(6):367-373.
Wang T, Muhetaer HJ, Li J. Experimental study of transforming growth factor-β3 combined with den-tal pulp stem cells in promoting the implant’s os-seointegration[J]. Chin J Stomatol, 2017, 52(6):367-373.
[12] 胡正雄, 李彪, 蓝天, 等. TGF-β2和geneX对BrdU标记骨髓间充质干细胞增殖与成骨分化的作用[J]. 昆明医科大学学报, 2016, 37(2):10-14.
Hu ZX, Li B, Lan T, et al. Effect of TGF- β2 and geneX on the proliferation and osteogenic differen-tiation of Brd U-labeled bone mesenchymal stem cells[J]. J Kunming Med Univ, 2016, 37(2):10-14.
[13] Nakamura T, Nakamura-Takahashi A, Kasahara M, et al. Tissue-nonspecific alkaline phosphatase promotes the osteogenic differentiation of osteoprogenitor cells[J]. Biochem Biophys Res Commun, 2020, 524(3):702-709.
doi: 10.1016/j.bbrc.2020.01.136
[14] Hou Z, Wang Z, Tao Y, et al. KLF2 regulates osteoblast differentiation by targeting of Runx2[J]. Lab Invest, 2019, 99(2):271-280.
[15] 胡胜涛. 自体PRP对成骨细胞骨涎蛋白表达的影响[D]. 石家庄: 河北医科大学, 2014.
Hu ST. Effect of autologous PRP on the expression of bone sialoprotein in osteoblasts[D]. Shijiazhuang: Hebei Medical University, 2014.
[16] Wang Y, Yao J, Yuan M, et al. Osteoblasts can induce dental pulp stem cells to undergo osteogenic differentiation[J]. Cytotechnology, 2013, 65(2):223-231.
doi: 10.1007/s10616-012-9479-5
[17] Carvalho MS, Cabral JM, da Silva CL, et al. Synergistic effect of extracellularly supplemented osteopontin and osteocalcin on stem cell proliferation, osteogenic differentiation, and angiogenic properties[J]. J Cell Biochem, 2019, 120(4):6555-6569.
doi: 10.1002/jcb.27948 pmid: 30362184
[1] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[2] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[3] Yu Lerong,Li Xiangwei,Ai Hong. Research progress on the stemness maintenance of dental pulp stem cells [J]. Int J Stomatol, 2023, 50(4): 463-471.
[4] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[5] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[6] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[7] Fu Hengyi,Wang Chenglin. Research progress on serum-free culture methods of human dental pulp stem cells and cell characterization [J]. Int J Stomatol, 2022, 49(2): 220-226.
[8] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[9] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[10] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[11] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[12] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
[13] Zhu Mingjing,Zhang Qingbin. Comparative review of growth factors inducing 3D in vitro cartilage formation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 270-277.
[14] Wang Runting,Fang Fuchun. Progress in research of non-coding RNAs in osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(2): 138-145.
[15] Yu Xiaohong,Liu Yu,Zeng Lian,Yang Yanling,Wang Zhou,Li Wei. Effects of enamel matrix derivative on proliferation and osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(1): 24-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .