Int J Stomatol ›› 2022, Vol. 49 ›› Issue (1): 19-26.doi: 10.7518/gjkq.2022002

• Orginal Article • Previous Articles     Next Articles

Research progress on various dental pulp regeneration scaffolds

Zhou Yi(),Zhao Yuming()   

  1. Dept. of Pediatric Dentistry, School & Hospital of Stomatology, Peking University, Beijing 100081, China
  • Received:2021-03-01 Revised:2021-07-02 Online:2022-01-01 Published:2022-01-07
  • Contact: Yuming Zhao;


Pulp regeneration is a new treatment approach for pulp inflammation or necrosis of young permanent teeth and induces apical foramen closure, root canal wall thickening, and root length increase. To improve the success rate of dental pulp regeneration, suitable scaffolds are fundamental to provide proper three-dimensional space and regulate stem cell differentiation, proliferation, and metabolism. At present, many studies have shown that a variety of scaffolds have potential for pulp regeneration. These scaffolds originate from biological extraction or artificial synthesis, and each has its own advantages. Biological extraction scaffolds mainly include blood clot, platelet rich plasma, platelet rich fibrin, polysaccharides, collagen, silk, acellular extracellular matrix, etc. Synthetic scaffolds mainly include polymers, bioceramics and composite scaffolds. In this review, we searched the literature on dental pulp regeneration in the past fifteen years and summarized the research progress on the performance and application prospects of above-mentioned various dental pulp regeneration scaffolds.

Key words: young permanent teeth, inflammation, necrosis, pulp regeneration, scaffolds

[1] Nygaard-Östby B, Hjortdal O. Tissue formation in the root canal following pulp removal[J]. Eur J Oral Sci, 1971,79(3):333-349.
[2] Gong T, Heng BC, Lo EC, et al. Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy[J]. Stem Cells Int, 2016,2016:9204574.
[3] Gathani KM, Raghavendra SS. Scaffolds in regenerative endodontics: a review[J]. Dent Res J (Isfahan), 2016,13(5):379-386.
[4] Alagl A, Bedi S, Hassan K, et al. Use of platelet-rich plasma for regeneration in non-vital immature permanent teeth: clinical and cone-beam computed tomography evaluation[J]. J Int Med Res, 2017,45(2):583-593.
[5] Bezgin T, Yilmaz AD, Celik BN, et al. Efficacy of platelet-rich plasma as a scaffold in regenerative endodontic treatment[J]. J Endod, 2015,41(1):36-44.
[6] Jiang XJ, Liu H, Peng CF. Clinical and radiographic assessment of the efficacy of a collagen membrane in regenerative endodontics: a randomized, controlled clinical trial[J]. J Endod, 2017,43(9):1465-1471.
[7] Nagy MM, Tawfik HE, Hashem AA, et al. Regene-rative potential of immature permanent teeth with necrotic pulps after different regenerative protocols[J]. J Endod, 2014,40(2):192-198.
[8] Altaii M, Richards L, Rossi-Fedele G. Histological assessment of regenerative endodontic treatment in animal studies with different scaffolds: a systematic review[J]. Dent Traumatol, 2017,33(4):235-244.
[9] Jadhav G, Shah N, Logani A. Revascularization with and without platelet-rich plasma in nonvital, immature, anterior teeth: a pilot clinical study[J]. J Endod, 2012,38(12):1581-1587.
[10] Marx RE, Carlson ER, Eichstaedt RM, et al. Platelet-rich plasma: growth factor enhancement for bone grafts[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998,85(6):638-646.
[11] Schmitz JP, Hollinger JO. The biology of platelet-rich plasma[J]. J Oral Maxillofac Surg, 2001,59(9):1119-1121.
[12] He L, Lin Y, Hu X, et al. A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009,108(5):707-713.
[13] Ulusoy AT, Turedi I, Cimen M, et al. Evaluation of blood clot, platelet-rich plasma, platelet-rich fibrin, and platelet pellet as scaffolds in regenerative endodontic treatment: a prospective randomized trial[J]. J Endod, 2019,45(5):560-566.
[14] 李文静, 李浩渤, 刘从娜, 等. 不同生物活性支架治疗年轻恒牙再生牙髓活力的比较[J]. 中国组织工程研究, 2021,25(4):499-503.
Li WJ, Li HB, Liu CN, et al. Comparison of different bioactive scaffolds in the treatment of regenerative pulp of young permanent teeth[J]. Chin J Tissue Eng Res, 2021,25(4):499-503.
[15] Bakhtiar H, Esmaeili S, Fakhr Tabatabayi S, et al. Second-generation platelet concentrate (platelet-rich fibrin) as a scaffold in regenerative endodontics: a case series[J]. J Endod, 2017,43(3):401-408.
[16] Nagaveni NB, Pathak S, Poornima P, et al. Revascularization induced maturogenesis of non-vital immature permanent tooth using platelet-rich-fibrin: a case report[J]. J Clin Pediatr Dent, 2016,40(1):26-30.
[17] Ray HL Jr, Marcelino J, Braga R, et al. Long-term follow up of revascularization using platelet-rich fibrin[J]. Dent Traumatol, 2016,32(1):80-84.
[18] Kitamura C, Nishihara T, Terashita M, et al. Local regeneration of dentin-pulp complex using controlled release of fgf-2 and naturally derived sponge-like scaffolds[J]. Int J Dent, 2012,2012:190561.
[19] 雷鸣, 高丽娜, 陈发明, 等. 牙髓组织工程和再生中生物支架材料的进展[J]. 牙体牙髓牙周病学杂志, 2013,23(1):51-56.
Lei M, Gao LN, Chen FM, et al. Biomaterial scaffold in dental pulp tissue engineering and regeneration[J]. Chin J Conserv Dent, 2013,23(1):51-56.
[20] Palma PJ, Ramos JC, Martins JB, et al. Histologic evaluation of regenerative endodontic procedures wi-th the use of chitosan scaffolds in immature dog teeth with apical periodontitis[J]. J Endod, 2017,43(8):1279-1287.
[21] Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering[J]. Eur Polym J, 2013,49(4):780-792.
[22] Lambricht L, De Berdt P, Vanacker J, et al. The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla[J]. Dent Mater, 2014,30(12):e349-e361.
[23] Martin DE, de Almeida JFA, Henry MA, et al. Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation[J]. J Endod, 2014,40(1):51-55.
[24] Inuyama Y, Kitamura C, Nishihara T, et al. Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp[J]. J Biomed Mater Res Part B: Appl Biomater, 2010,92B(1):120-128.
[25] Ferroni L, Gardin C, Sivolella S, et al. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue[J]. Int J Mol Sci, 2015,16(3):4666-4681.
[26] Marler JJ, Guha A, Rowley J, et al. Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts[J]. Plast Reconstr Surg, 2000,105(6):2049-2058.
[27] Dobie K, Smith G, Sloan AJ, et al. Effects of alginate hydrogels and TGF-β1 on human dental pulp repair in vitro[J]. Connect Tissue Res, 2002,43(2/3):387-390.
[28] Verma P, Nosrat A, Kim JR, et al. Effect of residual bacteria on the outcome of pulp regeneration in vivo[J]. J Dent Res, 2017,96(1):100-106.
[29] 曹春玲, 杨聪翀, 屈小中, 等. 可注射羟乙基壳聚糖基水凝胶理化性能及其对人牙髓细胞增殖和成牙本质向分化的作用[J]. 北京大学学报(医学版), 2020,52(1):10-17.
Cao CL, Yang CC, Qu XZ, et al. Effects of the injectable glycol-chitosan based hydrogel on the proliferation and differentiation of human dental pulp cells[J]. J Peking Univ (Heal Sci), 2020,52(1):10-17.
[30] Xiao M, Qiu J, Kuang R, et al. Synergistic effects of stromal cell-derived factor-1α and bone morphogenetic protein-2 treatment on odontogenic differentiation of human stem cells from apical papilla cultured in the VitroGel 3D system[J]. Cell Tissue Res, 2019,378(2):207-220.
[31] Vaissiere G, Chevallay B, Herbage D, et al. Comparative analysis of different collagen-based biomaterials as scaffolds for long-term culture of human fibroblasts[J]. Med Biol Eng Comput, 2000,38(2):205-210.
[32] Sculean A, Schwarz F, Chiantella GC, et al. Five-year results of a prospective, randomized, controlled study evaluating treatment of intra-bony defects with a natural bone mineral and GTR[J]. J Clin Periodontol, 2007,34(1):72-77.
[33] Behring J, Junker R, Walboomers XF, et al. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review[J]. Odontology, 2008,96(1):1-11.
[34] Fahmy SH, Hassanien EES, Nagy MM, et al. Investigation of the regenerative potential of necrotic mature teeth following different revascularisation protocols[J]. Aust Endod J, 2017,43(2):73-82.
[35] de Lourdes Dotto Londero C, Pagliarin CML, Felippe MCS, et al. Histologic analysis of the influence of a gelatin-based scaffold in the repair of immature dog teeth subjected to regenerative endodontic treatment[J]. J Endod, 2015,41(10):1619-1625.
[36] Yamauchi N, Yamauchi S, Nagaoka H, et al. Tissue engineering strategies for immature teeth with apical periodontitis[J]. J Endod, 2011,37(3):390-397.
[37] Ozeki N, Hase N, Higuchi N, et al. Gelatin scaffold combined with bone morphogenetic protein-4 induces odontoblast-like cell differentiation involving integrin profile changes, autophagy-related gene 10, and Wnt5 sequentially in human induced pluripotent stem cells[J]. Differentiation, 2017,93:1-14.
[38] Srisuwan T, Tilkorn DJ, Al-Benna S, et al. Revascularization and tissue regeneration of an empty root canal space is enhanced by a direct blood supply and stem cells[J]. Dent Traumatol, 2013,29(2):84-91.
[39] Kwon YS, Lee SH, Hwang YC, et al. Behaviour of human dental pulp cells cultured in a collagen hydrogel scaffold cross-linked with cinnamaldehyde[J]. Int Endod J, 2017,50(1):58-66.
[40] El Ashry SH, Abu-Seida AM, Bayoumi AA, et al. Regenerative potential of immature permanent non-vital teeth following different dentin surface treatments[J]. Exp Toxicol Pathol, 2016,68(2/3):181-190.
[41] Park JY, Yang C, Jung IH, et al. Regeneration of rabbit calvarial defects using cells-implanted nano-hydroxyapatite coated silk scaffolds[J]. Biomater Res, 2015,19:7.
[42] Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory responses to silk films in vitro and in vivo[J]. Biomaterials, 2005,26(2):147-155.
[43] Yang JW, Zhang YF, Sun ZY, et al. Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds[J]. J Biomater Appl, 2015,30(2):221-229.
[44] Yoo YJ, Lee W, Cho YA, et al. Effect of conditioned medium from preameloblasts on regenerative cellular differentiation of the immature teeth with necrotic pulp and apical periodontitis[J]. J Endod, 2014,40(9):1355-1361.
[45] Dissanayaka WL, Zhu L, Hargreaves KM, et al. Scaffold-free prevascularized microtissue spheroids for pulp regeneration[J]. J Dent Res, 2014,93(12):1296-1303.
[46] 杨宁, 陈旭, 刘尧. 细胞外基质支架及其在牙髓再生中应用的研究进展[J]. 中国实用口腔科杂志, 2020,13(5):305-308.
Yang N, Chen X, Liu Y. Research progress in extracellular matrix scaffold and its application in dental pulp regeneration[J]. Chin J Pract Stomatol, 2020,13(5):305-308.
[47] Matoug-Elwerfelli M, Duggal MS, Nazzal H, et al. A biocompatible decellularized pulp scaffold for regenerative endodontics[J]. Int Endod J, 2018,51(6):663-673.
[48] Song JS, Takimoto K, Jeon M, et al. Decellularized human dental pulp as a scaffold for regenerative endodontics[J]. J Dent Res, 2017,96(6):640-646.
[49] Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues[J]. Ann Biomed Eng, 2004,32(1):148-159.
[50] Gotlieb EL, Murray PE, Namerow KN, et al. An ultrastructural investigation of tissue-engineered pulp constructs implanted within endodontically treated teeth[J]. J Am Dent Assoc, 2008,139(4):457-465.
[51] El-Backly RM, Massoud AG, El-Badry AM, et al. Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits[J]. Aust Endod J, 2008,34(2):52-67.
[52] Cordeiro MM, Dong Z, Kaneko T, et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth[J]. J Endod, 2008,34(8):962-969.
[53] Leong DJ, Setzer FC, Trope M, et al. Biocompatibility of two experimental scaffolds for regenerative endodontics[J]. Restor Dent Endod, 2016,41(2):98.
[54] Albuquerque MTP, Evans JD, Gregory RL, et al. Antibacterial TAP-mimic electrospun polymer scaffold: effects on P. gingivalis-infected dentin biofilm[J]. Clin Oral Invest, 2016,20(2):387-393.
[55] Althumairy RI, Teixeira FB, Diogenes A. Effect of dentin conditioning with intracanal medicaments on survival of stem cells of apical papilla[J]. J Endod, 2014,40(4):521-525.
[56] Kamocki K, Nör JE, Bottino MC. Dental pulp stem cell responses to novel antibiotic-containing scaffol-ds for regenerative endodontics[J]. Int Endod J, 2015,48(12):1147-1156.
[57] Palasuk J, Kamocki K, Hippenmeyer L, et al. Bimix antimicrobial scaffolds for regenerative endodontics[J]. J Endod, 2014,40(11):1879-1884.
[58] Albuquerque MT, Valera MC, Moreira CS, et al. Effects of ciprofloxacin-containing scaffolds on Enterococcus faecalis biofilms[J]. J Endod, 2015,41(5):710-714.
[59] Albuquerque MTP, Ryan SJ, Münchow EA, et al. Antimicrobial effects of novel triple antibiotic paste-mimic scaffolds on Actinomyces naeslundii biofilm[J]. J Endod, 2015,41(8):1337-1343.
[60] Kamocki K, Nör JE, Bottino MC. Effects of ciprofloxacin-containing antimicrobial scaffolds on dental pulp stem cell viability: in vitro studies[J]. Arch Oral Biol, 2015,60(8):1131-1137.
[61] Qin W, Chen JY, Guo J, et al. Novel calcium phosphate cement with metformin-loaded chitosan for odontogenic differentiation of human dental pulp cells[J]. Stem Cells Int, 2018,2018:7173481.
[62] Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth[J]. PNAS, 2003,100(10):5807-5812.
[63] Goudouri OM, Theodosoglou E, Theocharidou A, et al. Magnesium based Sol-gel derived bioactive glass ceramics for dental tissue regeneration[J]. Key Eng Mater, 2011(493/494):884-889.
[64] Kushwaha M, Pan XL, Holloway JA, et al. Differentiation of human mesenchymal stem cells on niobium-doped fluorapatite glass-ceramics[J]. Dent Mater, 2012,28(3):252-260.
[65] Lim HC, Nam OH, Kim MJ, et al. Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells throu-gh integrin/BMP/mTOR signaling pathways[J]. Int J Nanomedicine, 2016,11:2557-2567.
[66] Agrawal CM, Athanasiou KA. Technique to control pH in vicinity of biodegrading PLA-PGA implants[J]. J Biomed Mater Res, 1997,38(2):105-114.
[67] Fu YC, Nie HM, Ho ML, et al. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2[J]. Biotechnol Bioeng, 2008,99(4):996-1006.
[68] Galler KM, Hartgerink JD, Cavender AC, et al. A customized self-assembling peptide hydrogel for dental pulp tissue engineering[J]. Tissue Eng Part A, 2012,18(1/2):176-184.
[69] Galler KM, Cavender A, Yuwono V, et al. Self-assembling peptide amphiphile nanofibers as a scaffold for dental stem cells[J]. Tissue Eng Part A, 2008,14(12):2051-2058.
[70] Kaushik SN, Kim B, Walma AM, et al. Biomimetic microenvironments for regenerative endodontics[J]. Biomater Res, 2016,20:14.
[71] Devillard R, Rémy M, Kalisky J, et al. In vitro assessment of a collagen/alginate composite scaffold for regenerative endodontics[J]. Int Endod J, 2017,50(1):48-57.
[72] Nevins AJ, Cymerman JJ. Revitalization of open apex teeth with apical periodontitis using a collagen-hydroxyapatite scaffold[J]. J Endod, 2015,41(6):966-973.
[73] Guo T, Li Y, Cao G, et al. Fluorapatite-modified scaffold on dental pulp stem cell mineralization[J]. J Dent Res, 2014,93(12):1290-1295.
[74] Bottino MC, Yassen GH, Platt JA, et al. A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations[J]. J Tissue Eng Regen Med, 2015,9(11):E116-E123.
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[3] Yang Xiaoyu,Yuan Quan.. Research progress on the role of extravascular fibrinogen deposition in mucosal diseases [J]. Int J Stomatol, 2023, 50(4): 457-462.
[4] Huang Dingming, Zhang Lan, Man Yi. Biologic bases of nature tooth-related maxillary sinus floor elevation [J]. Int J Stomatol, 2023, 50(3): 251-262.
[5] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[6] revascularization Meta-analysis of the efficacy comparison between endodontic,Zhuanzhuan apexification Li. OSID) [J]. Int J Stomatol, 2023, 50(2): 177-185.
[7] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[8] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[9] Chen Xiaoli,Zhang Fan,Liu Chengcheng. Application progress on photobiomodulation in the prevention and treatment of oral complications after radiothe-rapy [J]. Int J Stomatol, 2022, 49(6): 707-716.
[10] Li Zhuanzhuan,Gegen Tana. Research progress on root canal irrigation and disinfection drugs for pulp revascularization [J]. Int J Stomatol, 2022, 49(5): 569-577.
[11] Ji Xiao,Zhu Guiquan.. Research progress on the relationship between vitamin D and medication-related osteonecrosis of the jaw [J]. Int J Stomatol, 2022, 49(4): 441-447.
[12] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[13] Qin Siwen,Liao Li.. Strategies of vascularization in dental pulp regeneration [J]. Int J Stomatol, 2022, 49(3): 272-282.
[14] Li Guiping,Qin Xu,Zhu Guangxun.. Research progress on adenosine monophosphate-activated protein kinase in periodontal disease [J]. Int J Stomatol, 2022, 49(3): 343-348.
[15] Jiang Duan,Shen Daonan,Zhao Lei,Wu Yafei. Research progress on the relationship between new anti-inflammatory factor developmental endothelial locus-1 and periodontitis [J]. Int J Stomatol, 2022, 49(2): 244-248.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .