Int J Stomatol ›› 2022, Vol. 49 ›› Issue (3): 272-282.doi: 10.7518/gjkq.2022024

• Stem Cells and Regenerative Medicine • Previous Articles     Next Articles

Strategies of vascularization in dental pulp regeneration

Qin Siwen(),Liao Li.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-08-05 Revised:2021-12-02 Online:2022-05-01 Published:2022-05-09
  • Contact: Li. Liao E-mail:Sven_Qin@outlook.com;lliao@scu.edu.cn
  • Supported by:
    National Nature Science Foundation of China(82071092);Key Research and Development Projects in Sichuan Province(2019YFS0311)

Abstract:

Pulpitis has one of the highest incidences of oral diseases, and restoring the structure and function of dental pulp is difficult by the commonly adopted treatment methods. Therefore, the strategy of dental pulp regeneration through regenerative medicine has been widely explored. However, the reconstruction of a pulp vascular network is a difficult problem in pulp tissue regeneration because of the special morphological characteristics of root canal and pulp cavity. Studies on pulp angiogenesis strategies have mainly focused on two aspects: orthotopic angiogenesis strategies and graft pre-angiogenesis techniques. In this work, the basic principles of orthotopic angiogenesis in vivo were mainly discussed by systematically analyzing the results of research on angiogenesis in dental pulp regeneration based on dental pulp stem cells (DPSCs): 1) signaling molecules, physical and chemical factors, and regulation of extracellular vesicles during angiogenesis and 2) cell source, vascular network construction conditions, gel scaffold selection, and microenvironment configuration of the pre-angiogenesis system. Studies and trials on the strategies of the vascularization of dental pulp in clinics were also summarized. The application prospect of pre-angiogenesis in the reconstruction of a vascular network in pulp regeneration was also discussed and prospected.

Key words: pulp regeneration, stem cells, angiogenesis, vascularization, pre-vascularization

CLC Number: 

  • R 783

TrendMD: 

Tab 1

Signal factors required for the differentiation direction of DPSCs"

分化方向信号因子
成骨细胞水溶性17β雌激素、骨形态发生蛋白2
神经元细胞FGF-b、EGF、神经营养素3、BDNF、孕激素
血管内皮细胞FGF-b、VEGF、IGF-Ⅰ
1 Kim SG, Malek M, Sigurdsson A, et al. Regenerative endodontics: a comprehensive review[J]. Int Endod J, 2018, 51(12): 1367-1388.
2 Mason C, Dunnill P. A brief definition of regenerative medicine[J]. Regen Med, 2008, 3(1): 1-5.
3 Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics[J]. J Endod, 2005, 31(10): 711-718.
4 Nakashima M, Iohara K, Sugiyama M. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration[J]. Cytokine Growth Factor Rev, 2009, 20(5/6): 435-440.
5 Nakashima M, Iohara K. Regeneration of dental pulp by stem cells[J]. Adv Dent Res, 2011, 23(3): 313-319.
6 Clark ER, Clark EL. Microscopic observations on the growth of blood capillaries in the living mammal[J]. Am J Anat, 1939, 64(2): 251-301.
7 Caviedes-Bucheli J, Gomez-Sosa JF, Azuero-Holguin MM, et al. Angiogenic mechanisms of human dental pulp and their relationship with substance P expression in response to occlusal trauma[J]. Int Endod J, 2017, 50(4): 339-351.
8 Betz C, Lenard A, Belting HG, et al. Cell behaviors and dynamics during angiogenesis[J]. Development, 2016, 143(13): 2249-2260.
9 Yoon C, Choi C, Stapleton S, et al. Myosin Ⅱ A-mediated forces regulate multicellular integrity during vascular sprouting[J]. Mol Biol Cell, 2019, 30(16): 1974-1984.
10 Sigurbjörnsdóttir S, Mathew R, Leptin M. Molecular mechanisms of de novo lumen formation[J]. Nat Rev Mol Cell Biol, 2014, 15(10): 665-676.
11 Alhayaza R, Haque E, Karbasiafshar C, et al. The Relationship between reactive oxygen species and endothelial cell metabolism[J]. Front Chem, 2020, 8: 592688.
12 Liu F, Huang X, Luo Z, et al. Hypoxia-activated PI3K/Akt inhibits oxidative stress via the regulation of reactive oxygen species in human dental pulp cells[J]. Oxid Med Cell Longev, 2019, 2019: 6595189.
13 Maulik N, Das DK. Redox signaling in vascular angiogenesis[J]. Free Radic Biol Med, 2002, 33(8): 1047-1060.
14 Zhou J, Sun C. SENP1/HIF-1α axis works in angiogenesis of human dental pulp stem cells[J]. J Biochem Mol Toxicol, 2020, 34(3): e22436.
15 Gnanasegaran N, Govindasamy V, Musa S, et al. Innate molecular signature of stem cells from carious teeth influences differentiation toward endodermal endpoint[J]. J Immunol Regen Med, 2018, 1: 21-31.
16 Renard E, Gaudin A, Bienvenu G, et al. Immune cells and molecular networks in experimentally induced pulpitis[J]. J Dent Res, 2016, 95(2): 196-205.
17 Brodzikowska A, Gondek A, Rak B, et al. Metalloproteinase 14 (MMP-14) and hsa-miR-410-3p expression in human inflamed dental pulp and odontoblasts[J]. Histochem Cell Biol, 2019, 152(5): 345-353.
18 Bindal P, Gnanasegaran N, Bindal U, et al. Angiogenic effect of platelet-rich concentrates on dental pulp stem cells in inflamed microenvironment[J]. Clin Oral Invest, 2019, 23(10): 3821-3831.
19 Sanada F, Fujikawa T, Shibata K, et al. Therapeutic angiogenesis using HGF plasmid[J]. Ann Vasc Dis, 2020, 13(2): 109-115.
20 Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, et al. Contribution of angiogenesis to inflammation and cancer[J]. Front Oncol, 2019, 9: 1399.
21 Gong T, Xu J, Heng B, et al. EphrinB2/EphB4 signaling regulates DPSCs to induce sprouting angiogenesis of endothelial cells[J]. J Dent Res, 2019, 98(7): 803-812.
22 Zou T, Jiang S, Dissanayaka WL, et al. Sema4D/PlexinB1 promotes endothelial differentiation of dental pulp stem cells via activation of AKT and ERK1/2 signaling[J]. J Cell Biochem, 2019, 120(8): 13614-13624.
23 Palosaari H, Pennington CJ, Larmas M, et al. Expression profile of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in mature human odontoblasts and pulp tissue[J]. Eur J Oral Sci, 2003, 111(2): 117-127.
24 Senger DR, Davis GE. Angiogenesis[J]. Cold Spring Harb Perspect Biol, 2011, 3(8): a005090.
25 Presta M, Dell’ Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis[J]. Cytokine Growth Factor Rev, 2005, 16(2): 159-178.
26 Vidovic-Zdrilic I, Vining KH, Vijaykumar A, et al. FGF2 enhances odontoblast differentiation by αSM-A+ progenitors in vivo[J]. J Dent Res, 2018, 97(10): 1170-1177.
27 Shen S, Shang L, Liu H, et al. AGGF1 inhibits the expression of inflammatory mediators and promotes angiogenesis in dental pulp cells[J]. Clin Oral Investig, 2021, 25(2): 581-592.
28 Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease[J]. Biochem Pharmacol, 2008, 75(2): 346-359.
29 Takeuchi O, Komasa R, Hosoyama Y, et al. Wnt signal pathway regulates MMP-1 and MMP-3 production in human dental pulp fibroblast like cells[J]. J Oral Tiss Eng, 2018, 16(2): 47-56.
30 Hu J, Ni S, Cao Y, et al. The angiogenic effect of microRNA-21 targeting TIMP3 through the regulation of MMP2 and MMP9[J]. PLoS One, 2016, 11(2): e0149537.
31 Nara K, Kawashima N, Noda S, et al. Anti-inflammatory roles of microRNA 21 in lipopolysaccharide-stimulated human dental pulp cells[J]. J Cell Physiol, 2019, 234(11): 21331-21341.
32 Shi YH, Shi H, Nomi A, et al. Mesenchymal stem cell-derived extracellular vesicles: a new impetus of promoting angiogenesis in tissue regeneration[J]. Cytotherapy, 2019, 21(5): 497-508.
33 Zhou H, Li X, Yin Y, et al. The proangiogenic effects of extracellular vesicles secreted by dental pulp stem cells derived from periodontally compromised teeth[J]. Stem Cell Res Ther, 2020, 11(1): 110.
34 Ren S, Chen J, Duscher D, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways[J]. Stem Cell Res Ther, 2019, 10(1): 47.
35 Lucero R, Zappulli V, Sammarco A, et al. Glioma-derived miRNA-containing extracellular vesicles induce angiogenesis by reprogramming brain endothelial cells[J]. Cell Rep, 2020, 30(7): 2065-2074.e4.
36 Wang N, Chen CY, Yang DZ, et al. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(8): 2085-2092.
37 Lv L, Sheng CH, Zhou YS. Extracellular vesicles as a novel therapeutic tool for cell-free regenerative medicine in oral rehabilitation[J]. J Oral Rehabilitation, 2019, 47: 29-54.
38 Wang CG, Li Y, Yang M, et al. Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro[J]. Eur J Vasc Endovascular Surg, 2018, 55(2): 257-265.
39 Jehn P, Winterboer J, Kampmann A, et al. Angiogenic effects of mesenchymal stem cells in combination with different scaffold materials[J]. Microvasc Res, 2020, 127: 103925.
40 Liu CB, Huang H, Sun P, et al. Human umbilical cord-derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia[J]. Stem Cells Transl Med, 2016, 5(8): 1004-1013.
41 Arutyunyan I, Fatkhudinov T, Kananykhina E, et al. Role of VEGF-A in angiogenesis promoted by umbilical cord-derived mesenchymal stromal/stem cells: in vitro study[J]. Stem Cell Res Ther, 2016, 7: 46.
42 Chen WC, Liu X, Chen QM, et al. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs[J]. J Tissue Eng Regen Med, 2018, 12(1): 191-203.
43 Zhang S, Zhang WW, Li YP, et al. Cotransplantation of human umbilical cord mesenchymal stem cells and endothelial cells for angiogenesis and pulp regeneration in vivo[J]. Life Sci, 2020, 255: 117763.
44 Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT)[J]. Cytotherapy, 2013, 15(6): 641-648.
45 Bender R, McCarthy M, Brown T, et al. Human adipose derived cells in two- and three-dimensional cultures: functional validation of an in vitro fat construct[J]. Stem Cells Int, 2020, 2020: 1-14.
46 Volz AC, Huber B, Schwandt AM, et al. EGF and hydrocortisone as critical factors for the co-culture of adipogenic differentiated ASCs and endothelial cells[J]. Differentiation, 2017, 95: 21-30.
47 Arderiu G, Cuevas I, Chen A, et al. HoxA5 stabilizes adherens junctions via increased Akt1[J]. Cell Adhesion Migr, 2007, 1(4): 185-195.
48 Bi H, Li H, Zhang C, et al. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process[J]. Stem Cell Res Ther, 2019, 10(1): 302.
49 Jin Q, Yuan K, Lin W, et al. Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 1577-1584.
50 Mathew SA, Naik C, Cahill PA, et al. Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis[J]. Cell Mol Life Sci, 2020, 77(2): 253-265.
51 Liang L, Li Z, Ma T, et al. Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats[J]. Cell Transplant, 2017, 26(1): 45-61.
52 Komaki M, Numata Y, Morioka C, et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis[J]. Stem Cell Res Ther, 2017, 8(1): 219.
53 He YF, Xia J, Chen H, et al. Human adipose liquid extract induces angiogenesis and adipogenesis: a novel cell-free therapeutic agent[J]. Stem Cell Res Ther, 2019, 10: 252.
54 Yu Z, Cai Y, Deng M, et al. Fat extract promotes angiogenesis in a murine model of limb ischemia: a novel cell-free therapeutic strategy[J]. Stem Cell Res Ther, 2018, 9(1): 294.
55 Ahangar P, Mills SJ, Cowin AJ. Mesenchymal stem cell secretome as an emerging cell-free alternative for improving wound repair[J]. Int J Mol Sci, 2020, 21(19): 7038.
56 Al-Hendy A, Chicago UOIA. Towards cell free therapy of premature ovarian insufficiency: human bone marrow mesenchymal stem cells secretome enhances angiogenesis in human ovarian microvascular endothelial cells[J]. J Stem Cells Res Dev Ther, 2019, 5(2): 1-8.
57 Kato M, Tsunekawa S, Nakamura N, et al. Secreted factors from stem cells of human exfoliated deciduous teeth directly activate endothelial cells to promote all processes of angiogenesis[J]. Cells, 2020, 9(11): 2385.
58 Seo Y, Shin TH, Kim HS. Current strategies to enhance adipose stem cell function: an update[J]. Int J Mol Sci, 2019, 20(15): 3827.
59 Chance TC, Herzig MC, Christy BA, et al. Human mesenchymal stromal cell source and culture conditions influence extracellular vesicle angiogenic and metabolic effects on human endothelial cells in vitro[J]. J Trauma Acute Care Surg, 2020, 89(Suppl 2): S100-S108.
60 Zhou YJ, Liu SY, Zhao M, et al. Injectable extracellular vesicle-released self-assembling peptide nanofiber hydrogel as an enhanced cell-free therapy for tissue regeneration[J]. J Control Release, 2019, 316: 93-104.
61 Zhang SY, Thiebes AL, Kreimendahl F, et al. Extracellular vesicles-loaded fibrin gel supports rapid neovascularization for dental pulp regeneration[J]. Int J Mol Sci, 2020, 21(12): 4226.
62 Seang S, Pavasant P, Limjeerajarus CN. Iloprost induces dental pulp angiogenesis in a growth factorfree 3-dimensional organ culture system[J]. J Endod, 2018, 44(5): 759-764.e2.
63 Ibrahim AH, Li H, Al-Rawi SS, et al. Angiogenic and wound healing potency of fermented virgin coconut oil: in vitro and in vivo studies[J]. Am J Transl Res, 2017, 9(11): 4936-4944.
64 Yu M, Liu W, Li J, et al. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway[J]. Stem Cell Res Ther, 2020, 11(1): 350.
65 Bakhtiar H, Pezeshki-Modaress M, Kiaipour Z, et al. Pulp ECM-derived macroporous scaffolds for stimulation of dental-pulp regeneration process[J]. Dent Mater, 2020, 36(1): 76-87.
66 Moonesi Rad R, Atila D, Akgün EE, et al. Evaluation of human dental pulp stem cells behavior on a novel nanobiocomposite scaffold prepared for regenerative endodontics[J]. Mater Sci Eng C Mater Biol Appl, 2019, 100: 928-948.
67 Hunt NC, Grover LM. Cell encapsulation using biopolymer gels for regenerative medicine[J]. Biotechnol Lett, 2010, 32(6): 733-742.
68 Paduano F, Marrelli M, White LJ, et al. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type Ⅰ[J]. PLoS One, 2016, 11(2): e0148225.
69 Jiang YC, Wang XF, Xu YY, et al. Polycaprolactone nanofibers containing vascular endothelial growth factor-encapsulated gelatin particles enhance mesenchymal stem cell differentiation and angiogenesis of endothelial cells[J]. Biomacromolecules, 2018, 19(9): 3747-3753.
70 Ardeshirylajimi A, Golchin A, Vargas J, et al. Application of stem cell encapsulated hydrogel in dentistry[M]//Tayebi L.Applications of biomedical engineering in dentistry. Cham: Springer International Publishing, 2019: 289-300.
71 Samourides A, Browning L, Hearnden V, et al. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108: 110384.
72 Qazi TH, Tytgat L, Dubruel P, et al. Extrusion printed scaffolds with varying pore size as modulators of MSC angiogenic paracrine effects[J]. ACS Biomater Sci Eng, 2019, 5(10): 5348-5358.
73 Dehli F, Rebers L, Stubenrauch C, et al. Highly ordered gelatin methacryloyl hydrogel foams with tunable pore size[J]. Biomacromolecules, 2019, 20(7): 2666-2674.
74 Alraies A, Waddington RJ, Sloan AJ, et al. Evaluation of dental pulp stem cell heterogeneity and behaviour in 3D type I collagen gels[J]. Biomed Res Int, 2020, 2020: 3034727.
75 Yu HY, Zhang XY, Song WJ, et al. Effects of 3-dimensional bioprinting alginate/gelatin hydrogel scaffold extract on proliferation and differentiation of human dental pulp stem cells[J]. J Endod, 2019, 45(6): 706-715.
76 Jessop ZM, Al-Sabah A, Gao N, et al. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting[J]. Biofabrication, 2019, 11(4): 045006.
77 Bhuptani RS, Patravale VB. Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells[J]. Int J Pharm, 2016, 515(1/2): 555-564.
78 Campodoni E, Dozio SM, Panseri S, et al. Mimicking natural microenvironments: design of 3D-aligned hybrid scaffold for dentin regeneration[J]. Front Bioeng Biotechnol, 2020, 8: 836.
79 Karimi F, O’Connor AJ, Qiao GG, et al. Integrin clustering matters: a review of biomaterials functionalized with multivalent integrin-binding ligands to improve cell adhesion, migration, differentiation, angiogenesis, and biomedical device integration[J]. Adv Healthc Mater, 2018, 7(12): 1701324.
80 Sanaei-Rad P, Jamshidi D, Adel M, et al. Electrospun poly(l-lactide) nanofibers coated with mineral trioxide aggregate enhance odontogenic differentiation of dental pulp stem cells[J]. Polym Adv Technol, 2021, 32(1): 402-410.
81 Seonwoo H, Jang KJ, Lee D, et al. Neurogenic differentiation of human dental pulp stem cells on graphene-polycaprolactone hybrid nanofibers[J]. Nanomaterials (Basel), 2018, 8(7): 554.
82 Ferro F, Spelat R, Baheney CS. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation[M]//Kioussi C. Stem cells and tissue repair. New York: Springer New York, 2014: 91-115.
83 Duncan HF, Kobayashi Y, Shimizu E. Growth factors and cell homing in dental tissue regeneration[J]. Curr Oral Health Rep, 2018, 5(4): 276-285.
84 Huang CC, Narayanan R, Warshawsky N, et al. Dual ECM biomimetic scaffolds for dental pulp regenerative applications[J]. Front Physiol, 2018, 9: 495.
85 Hu L, Gao Z, Xu J, et al. Decellularized swine dental pulp as a bioscaffold for pulp regeneration[J]. Biomed Res Int, 2017, 2017: 9342714.
86 Lin CY, Tsai MS, Kuo PJ, et al. 2, 3, 5, 4'-Tetrahydroxystilbene-2-O-β-d-glucoside promotes the effects of dental pulp stem cells on rebuilding periodontal tissues in experimental periodontal defects[J]. J Periodontol, 2021, 92(2): 306-316.
87 Athirasala A, Lins F, Tahayeri A, et al. A novel strategy to engineer pre-vascularized full-length dental pu-lplike tissue constructs[J]. Sci Rep, 2017, 7(1): 3323.
88 Gotjamanos T. Cellular organization in the subodontoblastic zone of the dental pulp: Ⅰ. A study of cell-free and cell-rich layers in pulps of adult rat and deciduous monkey teeth[J]. Arch Oral Biol, 1969, 14(9): 1007-IN3.
[1] Yu Lerong,Li Xiangwei,Ai Hong. Research progress on the stemness maintenance of dental pulp stem cells [J]. Int J Stomatol, 2023, 50(4): 463-471.
[2] revascularization Meta-analysis of the efficacy comparison between endodontic,Zhuanzhuan apexification Li. OSID) [J]. Int J Stomatol, 2023, 50(2): 177-185.
[3] Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42.
[4] Li Zhuanzhuan,Gegen Tana. Research progress on root canal irrigation and disinfection drugs for pulp revascularization [J]. Int J Stomatol, 2022, 49(5): 569-577.
[5] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[6] Fu Hengyi,Wang Chenglin. Research progress on serum-free culture methods of human dental pulp stem cells and cell characterization [J]. Int J Stomatol, 2022, 49(2): 220-226.
[7] Zhou Yi,Zhao Yuming. Research progress on various dental pulp regeneration scaffolds [J]. Int J Stomatol, 2022, 49(1): 19-26.
[8] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
[9] Cao Chunling,Han Bing,Wang Xiaoyan. Research progress on hydrogels for pulp regeneration [J]. Int J Stomatol, 2021, 48(2): 192-197.
[10] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
[11] Chen Ye, Zhou Feng, Wu Qionghui, Che Huiling, Li Jiaxuan, Shen Jiaqi, Luo En. Effect of adiponectin on bone marrow mesenchymal stem cells and its regulatory mechanisms [J]. Int J Stomatol, 2021, 48(1): 58-63.
[12] Li Mei,Wen Ningning,Zhao Yuan. Treatment options for young permanent teeth with pulp necrosis [J]. Int J Stomatol, 2020, 47(4): 445-451.
[13] Yidi Jiang,Chenglin Wang,Ling Ye. Complications of regenerative endodontics [J]. Inter J Stomatol, 2019, 46(1): 73-77.
[14] Longbiao Li,Chenglin Wang,Ling Ye. Research progress on natural scaffold in the regeneration of dental pulp tissue engineering [J]. Inter J Stomatol, 2018, 45(6): 666-672.
[15] Yang Xin, Li Sijie, Zhao Wei. Wnt signaling pathway mediates the dental pulp stem cells in multipotential differentiation and inflammatory microenvironment [J]. Inter J Stomatol, 2018, 45(3): 286-290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .