Int J Stomatol ›› 2022, Vol. 49 ›› Issue (3): 272-282.doi: 10.7518/gjkq.2022024
• Stem Cells and Regenerative Medicine • Previous Articles Next Articles
CLC Number:
1 | Kim SG, Malek M, Sigurdsson A, et al. Regenerative endodontics: a comprehensive review[J]. Int Endod J, 2018, 51(12): 1367-1388. |
2 | Mason C, Dunnill P. A brief definition of regenerative medicine[J]. Regen Med, 2008, 3(1): 1-5. |
3 | Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics[J]. J Endod, 2005, 31(10): 711-718. |
4 | Nakashima M, Iohara K, Sugiyama M. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration[J]. Cytokine Growth Factor Rev, 2009, 20(5/6): 435-440. |
5 | Nakashima M, Iohara K. Regeneration of dental pulp by stem cells[J]. Adv Dent Res, 2011, 23(3): 313-319. |
6 | Clark ER, Clark EL. Microscopic observations on the growth of blood capillaries in the living mammal[J]. Am J Anat, 1939, 64(2): 251-301. |
7 | Caviedes-Bucheli J, Gomez-Sosa JF, Azuero-Holguin MM, et al. Angiogenic mechanisms of human dental pulp and their relationship with substance P expression in response to occlusal trauma[J]. Int Endod J, 2017, 50(4): 339-351. |
8 | Betz C, Lenard A, Belting HG, et al. Cell behaviors and dynamics during angiogenesis[J]. Development, 2016, 143(13): 2249-2260. |
9 | Yoon C, Choi C, Stapleton S, et al. Myosin Ⅱ A-mediated forces regulate multicellular integrity during vascular sprouting[J]. Mol Biol Cell, 2019, 30(16): 1974-1984. |
10 | Sigurbjörnsdóttir S, Mathew R, Leptin M. Molecular mechanisms of de novo lumen formation[J]. Nat Rev Mol Cell Biol, 2014, 15(10): 665-676. |
11 | Alhayaza R, Haque E, Karbasiafshar C, et al. The Relationship between reactive oxygen species and endothelial cell metabolism[J]. Front Chem, 2020, 8: 592688. |
12 | Liu F, Huang X, Luo Z, et al. Hypoxia-activated PI3K/Akt inhibits oxidative stress via the regulation of reactive oxygen species in human dental pulp cells[J]. Oxid Med Cell Longev, 2019, 2019: 6595189. |
13 | Maulik N, Das DK. Redox signaling in vascular angiogenesis[J]. Free Radic Biol Med, 2002, 33(8): 1047-1060. |
14 | Zhou J, Sun C. SENP1/HIF-1α axis works in angiogenesis of human dental pulp stem cells[J]. J Biochem Mol Toxicol, 2020, 34(3): e22436. |
15 | Gnanasegaran N, Govindasamy V, Musa S, et al. Innate molecular signature of stem cells from carious teeth influences differentiation toward endodermal endpoint[J]. J Immunol Regen Med, 2018, 1: 21-31. |
16 | Renard E, Gaudin A, Bienvenu G, et al. Immune cells and molecular networks in experimentally induced pulpitis[J]. J Dent Res, 2016, 95(2): 196-205. |
17 | Brodzikowska A, Gondek A, Rak B, et al. Metalloproteinase 14 (MMP-14) and hsa-miR-410-3p expression in human inflamed dental pulp and odontoblasts[J]. Histochem Cell Biol, 2019, 152(5): 345-353. |
18 | Bindal P, Gnanasegaran N, Bindal U, et al. Angiogenic effect of platelet-rich concentrates on dental pulp stem cells in inflamed microenvironment[J]. Clin Oral Invest, 2019, 23(10): 3821-3831. |
19 | Sanada F, Fujikawa T, Shibata K, et al. Therapeutic angiogenesis using HGF plasmid[J]. Ann Vasc Dis, 2020, 13(2): 109-115. |
20 | Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, et al. Contribution of angiogenesis to inflammation and cancer[J]. Front Oncol, 2019, 9: 1399. |
21 | Gong T, Xu J, Heng B, et al. EphrinB2/EphB4 signaling regulates DPSCs to induce sprouting angiogenesis of endothelial cells[J]. J Dent Res, 2019, 98(7): 803-812. |
22 | Zou T, Jiang S, Dissanayaka WL, et al. Sema4D/PlexinB1 promotes endothelial differentiation of dental pulp stem cells via activation of AKT and ERK1/2 signaling[J]. J Cell Biochem, 2019, 120(8): 13614-13624. |
23 | Palosaari H, Pennington CJ, Larmas M, et al. Expression profile of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in mature human odontoblasts and pulp tissue[J]. Eur J Oral Sci, 2003, 111(2): 117-127. |
24 | Senger DR, Davis GE. Angiogenesis[J]. Cold Spring Harb Perspect Biol, 2011, 3(8): a005090. |
25 | Presta M, Dell’ Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis[J]. Cytokine Growth Factor Rev, 2005, 16(2): 159-178. |
26 | Vidovic-Zdrilic I, Vining KH, Vijaykumar A, et al. FGF2 enhances odontoblast differentiation by αSM-A+ progenitors in vivo[J]. J Dent Res, 2018, 97(10): 1170-1177. |
27 | Shen S, Shang L, Liu H, et al. AGGF1 inhibits the expression of inflammatory mediators and promotes angiogenesis in dental pulp cells[J]. Clin Oral Investig, 2021, 25(2): 581-592. |
28 | Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease[J]. Biochem Pharmacol, 2008, 75(2): 346-359. |
29 | Takeuchi O, Komasa R, Hosoyama Y, et al. Wnt signal pathway regulates MMP-1 and MMP-3 production in human dental pulp fibroblast like cells[J]. J Oral Tiss Eng, 2018, 16(2): 47-56. |
30 | Hu J, Ni S, Cao Y, et al. The angiogenic effect of microRNA-21 targeting TIMP3 through the regulation of MMP2 and MMP9[J]. PLoS One, 2016, 11(2): e0149537. |
31 | Nara K, Kawashima N, Noda S, et al. Anti-inflammatory roles of microRNA 21 in lipopolysaccharide-stimulated human dental pulp cells[J]. J Cell Physiol, 2019, 234(11): 21331-21341. |
32 | Shi YH, Shi H, Nomi A, et al. Mesenchymal stem cell-derived extracellular vesicles: a new impetus of promoting angiogenesis in tissue regeneration[J]. Cytotherapy, 2019, 21(5): 497-508. |
33 | Zhou H, Li X, Yin Y, et al. The proangiogenic effects of extracellular vesicles secreted by dental pulp stem cells derived from periodontally compromised teeth[J]. Stem Cell Res Ther, 2020, 11(1): 110. |
34 | Ren S, Chen J, Duscher D, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways[J]. Stem Cell Res Ther, 2019, 10(1): 47. |
35 | Lucero R, Zappulli V, Sammarco A, et al. Glioma-derived miRNA-containing extracellular vesicles induce angiogenesis by reprogramming brain endothelial cells[J]. Cell Rep, 2020, 30(7): 2065-2074.e4. |
36 | Wang N, Chen CY, Yang DZ, et al. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(8): 2085-2092. |
37 | Lv L, Sheng CH, Zhou YS. Extracellular vesicles as a novel therapeutic tool for cell-free regenerative medicine in oral rehabilitation[J]. J Oral Rehabilitation, 2019, 47: 29-54. |
38 | Wang CG, Li Y, Yang M, et al. Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro[J]. Eur J Vasc Endovascular Surg, 2018, 55(2): 257-265. |
39 | Jehn P, Winterboer J, Kampmann A, et al. Angiogenic effects of mesenchymal stem cells in combination with different scaffold materials[J]. Microvasc Res, 2020, 127: 103925. |
40 | Liu CB, Huang H, Sun P, et al. Human umbilical cord-derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia[J]. Stem Cells Transl Med, 2016, 5(8): 1004-1013. |
41 | Arutyunyan I, Fatkhudinov T, Kananykhina E, et al. Role of VEGF-A in angiogenesis promoted by umbilical cord-derived mesenchymal stromal/stem cells: in vitro study[J]. Stem Cell Res Ther, 2016, 7: 46. |
42 | Chen WC, Liu X, Chen QM, et al. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs[J]. J Tissue Eng Regen Med, 2018, 12(1): 191-203. |
43 | Zhang S, Zhang WW, Li YP, et al. Cotransplantation of human umbilical cord mesenchymal stem cells and endothelial cells for angiogenesis and pulp regeneration in vivo[J]. Life Sci, 2020, 255: 117763. |
44 | Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT)[J]. Cytotherapy, 2013, 15(6): 641-648. |
45 | Bender R, McCarthy M, Brown T, et al. Human adipose derived cells in two- and three-dimensional cultures: functional validation of an in vitro fat construct[J]. Stem Cells Int, 2020, 2020: 1-14. |
46 | Volz AC, Huber B, Schwandt AM, et al. EGF and hydrocortisone as critical factors for the co-culture of adipogenic differentiated ASCs and endothelial cells[J]. Differentiation, 2017, 95: 21-30. |
47 | Arderiu G, Cuevas I, Chen A, et al. HoxA5 stabilizes adherens junctions via increased Akt1[J]. Cell Adhesion Migr, 2007, 1(4): 185-195. |
48 | Bi H, Li H, Zhang C, et al. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process[J]. Stem Cell Res Ther, 2019, 10(1): 302. |
49 | Jin Q, Yuan K, Lin W, et al. Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 1577-1584. |
50 | Mathew SA, Naik C, Cahill PA, et al. Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis[J]. Cell Mol Life Sci, 2020, 77(2): 253-265. |
51 | Liang L, Li Z, Ma T, et al. Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats[J]. Cell Transplant, 2017, 26(1): 45-61. |
52 | Komaki M, Numata Y, Morioka C, et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis[J]. Stem Cell Res Ther, 2017, 8(1): 219. |
53 | He YF, Xia J, Chen H, et al. Human adipose liquid extract induces angiogenesis and adipogenesis: a novel cell-free therapeutic agent[J]. Stem Cell Res Ther, 2019, 10: 252. |
54 | Yu Z, Cai Y, Deng M, et al. Fat extract promotes angiogenesis in a murine model of limb ischemia: a novel cell-free therapeutic strategy[J]. Stem Cell Res Ther, 2018, 9(1): 294. |
55 | Ahangar P, Mills SJ, Cowin AJ. Mesenchymal stem cell secretome as an emerging cell-free alternative for improving wound repair[J]. Int J Mol Sci, 2020, 21(19): 7038. |
56 | Al-Hendy A, Chicago UOIA. Towards cell free therapy of premature ovarian insufficiency: human bone marrow mesenchymal stem cells secretome enhances angiogenesis in human ovarian microvascular endothelial cells[J]. J Stem Cells Res Dev Ther, 2019, 5(2): 1-8. |
57 | Kato M, Tsunekawa S, Nakamura N, et al. Secreted factors from stem cells of human exfoliated deciduous teeth directly activate endothelial cells to promote all processes of angiogenesis[J]. Cells, 2020, 9(11): 2385. |
58 | Seo Y, Shin TH, Kim HS. Current strategies to enhance adipose stem cell function: an update[J]. Int J Mol Sci, 2019, 20(15): 3827. |
59 | Chance TC, Herzig MC, Christy BA, et al. Human mesenchymal stromal cell source and culture conditions influence extracellular vesicle angiogenic and metabolic effects on human endothelial cells in vitro[J]. J Trauma Acute Care Surg, 2020, 89(Suppl 2): S100-S108. |
60 | Zhou YJ, Liu SY, Zhao M, et al. Injectable extracellular vesicle-released self-assembling peptide nanofiber hydrogel as an enhanced cell-free therapy for tissue regeneration[J]. J Control Release, 2019, 316: 93-104. |
61 | Zhang SY, Thiebes AL, Kreimendahl F, et al. Extracellular vesicles-loaded fibrin gel supports rapid neovascularization for dental pulp regeneration[J]. Int J Mol Sci, 2020, 21(12): 4226. |
62 | Seang S, Pavasant P, Limjeerajarus CN. Iloprost induces dental pulp angiogenesis in a growth factorfree 3-dimensional organ culture system[J]. J Endod, 2018, 44(5): 759-764.e2. |
63 | Ibrahim AH, Li H, Al-Rawi SS, et al. Angiogenic and wound healing potency of fermented virgin coconut oil: in vitro and in vivo studies[J]. Am J Transl Res, 2017, 9(11): 4936-4944. |
64 | Yu M, Liu W, Li J, et al. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway[J]. Stem Cell Res Ther, 2020, 11(1): 350. |
65 | Bakhtiar H, Pezeshki-Modaress M, Kiaipour Z, et al. Pulp ECM-derived macroporous scaffolds for stimulation of dental-pulp regeneration process[J]. Dent Mater, 2020, 36(1): 76-87. |
66 | Moonesi Rad R, Atila D, Akgün EE, et al. Evaluation of human dental pulp stem cells behavior on a novel nanobiocomposite scaffold prepared for regenerative endodontics[J]. Mater Sci Eng C Mater Biol Appl, 2019, 100: 928-948. |
67 | Hunt NC, Grover LM. Cell encapsulation using biopolymer gels for regenerative medicine[J]. Biotechnol Lett, 2010, 32(6): 733-742. |
68 | Paduano F, Marrelli M, White LJ, et al. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type Ⅰ[J]. PLoS One, 2016, 11(2): e0148225. |
69 | Jiang YC, Wang XF, Xu YY, et al. Polycaprolactone nanofibers containing vascular endothelial growth factor-encapsulated gelatin particles enhance mesenchymal stem cell differentiation and angiogenesis of endothelial cells[J]. Biomacromolecules, 2018, 19(9): 3747-3753. |
70 | Ardeshirylajimi A, Golchin A, Vargas J, et al. Application of stem cell encapsulated hydrogel in dentistry[M]//Tayebi L.Applications of biomedical engineering in dentistry. Cham: Springer International Publishing, 2019: 289-300. |
71 | Samourides A, Browning L, Hearnden V, et al. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108: 110384. |
72 | Qazi TH, Tytgat L, Dubruel P, et al. Extrusion printed scaffolds with varying pore size as modulators of MSC angiogenic paracrine effects[J]. ACS Biomater Sci Eng, 2019, 5(10): 5348-5358. |
73 | Dehli F, Rebers L, Stubenrauch C, et al. Highly ordered gelatin methacryloyl hydrogel foams with tunable pore size[J]. Biomacromolecules, 2019, 20(7): 2666-2674. |
74 | Alraies A, Waddington RJ, Sloan AJ, et al. Evaluation of dental pulp stem cell heterogeneity and behaviour in 3D type I collagen gels[J]. Biomed Res Int, 2020, 2020: 3034727. |
75 | Yu HY, Zhang XY, Song WJ, et al. Effects of 3-dimensional bioprinting alginate/gelatin hydrogel scaffold extract on proliferation and differentiation of human dental pulp stem cells[J]. J Endod, 2019, 45(6): 706-715. |
76 | Jessop ZM, Al-Sabah A, Gao N, et al. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting[J]. Biofabrication, 2019, 11(4): 045006. |
77 | Bhuptani RS, Patravale VB. Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells[J]. Int J Pharm, 2016, 515(1/2): 555-564. |
78 | Campodoni E, Dozio SM, Panseri S, et al. Mimicking natural microenvironments: design of 3D-aligned hybrid scaffold for dentin regeneration[J]. Front Bioeng Biotechnol, 2020, 8: 836. |
79 | Karimi F, O’Connor AJ, Qiao GG, et al. Integrin clustering matters: a review of biomaterials functionalized with multivalent integrin-binding ligands to improve cell adhesion, migration, differentiation, angiogenesis, and biomedical device integration[J]. Adv Healthc Mater, 2018, 7(12): 1701324. |
80 | Sanaei-Rad P, Jamshidi D, Adel M, et al. Electrospun poly(l-lactide) nanofibers coated with mineral trioxide aggregate enhance odontogenic differentiation of dental pulp stem cells[J]. Polym Adv Technol, 2021, 32(1): 402-410. |
81 | Seonwoo H, Jang KJ, Lee D, et al. Neurogenic differentiation of human dental pulp stem cells on graphene-polycaprolactone hybrid nanofibers[J]. Nanomaterials (Basel), 2018, 8(7): 554. |
82 | Ferro F, Spelat R, Baheney CS. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation[M]//Kioussi C. Stem cells and tissue repair. New York: Springer New York, 2014: 91-115. |
83 | Duncan HF, Kobayashi Y, Shimizu E. Growth factors and cell homing in dental tissue regeneration[J]. Curr Oral Health Rep, 2018, 5(4): 276-285. |
84 | Huang CC, Narayanan R, Warshawsky N, et al. Dual ECM biomimetic scaffolds for dental pulp regenerative applications[J]. Front Physiol, 2018, 9: 495. |
85 | Hu L, Gao Z, Xu J, et al. Decellularized swine dental pulp as a bioscaffold for pulp regeneration[J]. Biomed Res Int, 2017, 2017: 9342714. |
86 | Lin CY, Tsai MS, Kuo PJ, et al. 2, 3, 5, 4'-Tetrahydroxystilbene-2-O-β-d-glucoside promotes the effects of dental pulp stem cells on rebuilding periodontal tissues in experimental periodontal defects[J]. J Periodontol, 2021, 92(2): 306-316. |
87 | Athirasala A, Lins F, Tahayeri A, et al. A novel strategy to engineer pre-vascularized full-length dental pu-lplike tissue constructs[J]. Sci Rep, 2017, 7(1): 3323. |
88 | Gotjamanos T. Cellular organization in the subodontoblastic zone of the dental pulp: Ⅰ. A study of cell-free and cell-rich layers in pulps of adult rat and deciduous monkey teeth[J]. Arch Oral Biol, 1969, 14(9): 1007-IN3. |
[1] | Yu Lerong,Li Xiangwei,Ai Hong. Research progress on the stemness maintenance of dental pulp stem cells [J]. Int J Stomatol, 2023, 50(4): 463-471. |
[2] | revascularization Meta-analysis of the efficacy comparison between endodontic,Zhuanzhuan apexification Li. OSID) [J]. Int J Stomatol, 2023, 50(2): 177-185. |
[3] | Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42. |
[4] | Li Zhuanzhuan,Gegen Tana. Research progress on root canal irrigation and disinfection drugs for pulp revascularization [J]. Int J Stomatol, 2022, 49(5): 569-577. |
[5] | Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496. |
[6] | Fu Hengyi,Wang Chenglin. Research progress on serum-free culture methods of human dental pulp stem cells and cell characterization [J]. Int J Stomatol, 2022, 49(2): 220-226. |
[7] | Zhou Yi,Zhao Yuming. Research progress on various dental pulp regeneration scaffolds [J]. Int J Stomatol, 2022, 49(1): 19-26. |
[8] | Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639. |
[9] | Cao Chunling,Han Bing,Wang Xiaoyan. Research progress on hydrogels for pulp regeneration [J]. Int J Stomatol, 2021, 48(2): 192-197. |
[10] | Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204. |
[11] | Chen Ye, Zhou Feng, Wu Qionghui, Che Huiling, Li Jiaxuan, Shen Jiaqi, Luo En. Effect of adiponectin on bone marrow mesenchymal stem cells and its regulatory mechanisms [J]. Int J Stomatol, 2021, 48(1): 58-63. |
[12] | Li Mei,Wen Ningning,Zhao Yuan. Treatment options for young permanent teeth with pulp necrosis [J]. Int J Stomatol, 2020, 47(4): 445-451. |
[13] | Yidi Jiang,Chenglin Wang,Ling Ye. Complications of regenerative endodontics [J]. Inter J Stomatol, 2019, 46(1): 73-77. |
[14] | Longbiao Li,Chenglin Wang,Ling Ye. Research progress on natural scaffold in the regeneration of dental pulp tissue engineering [J]. Inter J Stomatol, 2018, 45(6): 666-672. |
[15] | Yang Xin, Li Sijie, Zhao Wei. Wnt signaling pathway mediates the dental pulp stem cells in multipotential differentiation and inflammatory microenvironment [J]. Inter J Stomatol, 2018, 45(3): 286-290. |