Int J Stomatol ›› 2021, Vol. 48 ›› Issue (6): 644-655.doi: 10.7518/gjkq.2021104

• Original Articles • Previous Articles     Next Articles

Systematic review on the effect of photon-initiated photoacoustic streaming in endodontic irrigation

He Rong(),Liu Xuejun(),Zhou Yukun   

  1. Dept. of Special Clinic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
  • Received:2021-02-04 Revised:2021-07-15 Online:2021-11-01 Published:2021-10-28
  • Contact: Xuejun Liu E-mail:675384051@qq.com;lxj@zzu.edu.cn

Abstract:

Objective This work aims to evaluate the effect of photon-initiated photoacoustic streaming (PIPS) induced by Er: YAG laser activation on root canal irrigation. Methods Randomized controlled trials (RCTs) on the effect of PIPS in root canal irrigation in China were searched using China National Knowledge Infrastructure (CNKI), Wanfang Data Knowledge Service Platform, VIP Chinese Science and Technology Journal Database, PubMed, Embase, Cochrane Library, Web of Science, SCOPUS. All studies were published between January 2010 and July 2020 and were subsequently screened based on the inclusion and exclusion criteria. Item risk assessment and evaluation were conducted following the method of the Cochrane systematic review and PRISMA Guidelines. Results Forty-five eligible studies were included for description classification and systematic review. Results showed that PIPS has a significant effect on sterilizing; removing the smear layer, dentin debris, and calcium hydroxide from root canals; and increasing the depth of dentin tubule penetration. However, some findings failed to reflect the advantages of PIPS. At present, research on PIPS in terms of subjects (differences in length and curvature of isolated canals) remains lacking. The procedures and methods are not standardized, thus leading to differences in the research methods. Studies on root canal micro-fractures, irrigation solution and debris squeezed from apical foramen, standard parameters, comparison of various methods of irrigation, and randomized controlled clinical trials are also lacking. Conclusion Most studies showed that the PIPS of Er: YAG has significant effects on removing the bacteria, smear layer, dentin debris, and calcium hydroxide of root canals and increasing the depth of dentin tubule penetration. However, some results are controversial. This conclusion requires long-term, high-quality, and well-designed RCTs with large sample sizes for further validation.

Key words: Er: YAG laser, photon-initiated photoacoustic streaming, root canal treatment, root canal debridement, bacteria, smear layer, dentin tubule penetration, microcrack

CLC Number: 

  • R781.33

TrendMD: 

Fig 1

Screening flow chart"

Tab 1

Risk Assessment Form"

参考文献 样本量计算 同一操作者进行根管预备 同一操作者进行根管荡洗 牙齿预备荡洗过程标准化 牙齿是否随机分组 对照组和实验组使用的冲洗液是否相同 是否报告了操作者在使用PIPS方面的经验 研究人员是否使用盲法评估实验结果 风险评估
[7] 中度
[8] 中度
[9] 高度
[10] 高度
[11] 高度
[12] 高度
[13] 高度
[14] 高度
[15] 高度
[16] 高度
[17] 高度
[18] 高度
[19] 中度
[20] 高度
[21] 中度
[22] 高度
[23] 高度
[24] 高度
[25] 中度
[26] 高度
[27] 高度
[28] 高度
[29] 中度
[30] 高度
[31] 高度
[32] 高度
[33] 高度
[34] 高度
[35] 中度
[36] 高度
[37] 中度
[38] 高度
[39] 中度
[40] 高度
[41] 高度
[42] 高度
[43] 高度
[44] 中度
[45] 高度
[46] 中度
[47] 中度
[48] 高度
[49] 高度
[50] 高度
[51] 高度

Tab 2

Summary of related literature on sterilization effect of PIPS"

参考文献 研究对象 根管弯曲度 牙齿
类型
根长/mm 总样本量 PIPS参数设置 PIPS荡洗时间 冲洗液 检测方法 作者结论
[7] PIPS、Nd: YAG、CI 单根牙 14 110 35 mJ、15 Hz、
50 μs
20 s 1% NaClO 扫描电子显微镜 PIPS相比常规冲洗能去除更多的粪肠球菌生物膜
[18] PIPS、CI 单根牙 50 15 Hz、20 mJ、
50 μs、0.3 W
1 min、
2 min
5.25% NaClO 菌落计数、扫描电子显微镜 PIPS能有效去除根管内细菌
[17] PIPS、PUI、CI 单根牙 14 70 10 Hz、50 mJ 30 s 6% NaClO 菌落计数、组织学染色 PIPS能有效去除根管内细菌
[10] PIPS、CI 单根牙 86 10或20 mJ、
15 Hz、50 μs、0.15或0.3 W
2 min 1%或3%或5% NaClO 菌落计数和扫描电子显微镜 在10或20 mJ的能量下,PIPS均能有效去除细菌
[11] PIPS、CI 单根牙 68 15 Hz、20 mJ、
50 μs、0.3 W
90 s 6% NaClO和生理盐水 菌落计数、扫描电子显微镜、激光共聚焦显微镜 PIPS相比于其他组能有效去除细菌
[12] PIPS、SI、CI 单根牙 90 15 Hz、20 mJ、
50 μs、0.3 W
60 s 2.5% NaClO、Qmix PCR扩增、菌落计数 PIPS激活冲洗液灭菌作用与对照组无明显差异
[13] PIPS、CI 单根牙 148 15 Hz、20 mJ、
50 μs、0.3 W
30 s 5% NaClO 菌落计数 各组间细菌清除率无明显差异
[14] PIPS、CI 单根牙 26 15 Hz、20 mJ、
50 μs、0.3 W
60 s 5% NaClO 菌落计数、扫描电子显微镜 PIPS相比于其他组能有效去除细菌
[15] PIPS、CI 单根牙 48 15 Hz、20 mJ、
50 μs、0.3 W
60 s 3% NaClO 菌落计数、扫描电子显微镜 PIPS能去除细菌效果和注射器冲洗效果相当
[16] PIPS、Er, Cr: YSGG、Nd: YAG、LD 单根牙 70 15 Hz、20 mJ、
50 μs、0.3 W
1 min、3 min 5.25% NaClO 扫描电子显微镜、激光共聚焦显微镜 PIPS能有效去除根管内细菌

Tab 3

Summary of the literature on the role of PIPS in removing the smear layer"

参考文献 研究对象 根管弯曲度 牙齿
类型
根长/mm 总样本量 PIPS参数设置 PIPS荡洗时间 冲洗液 检测方法 作者结论
[20] PIPS、Er: YAG、Nd: YAG 单根牙 60 1 W、20 Hz、
50 mJ
60 s 蒸馏水 扫描电子显微镜 PIPS和其他LAI方法均比常规冲洗去除更多的玷污层
[21] PIPS、Nd:YAG、LD 单根牙 11±1 45 15 Hz、20 mJ、50 μs、0.3 W 60 s 5% NaClO 扫描电子显微镜 PIPS体现出良好的玷污层去除效果
[22] PIPS、Er: YAG、Nd: YAG、PUI、SAF、CI 单根牙 90 45 mJ、20 Hz、
0.9 W、50 µs
10 s×3次 5% NaClO、
17% EDTA
扫描电子显微镜 PIPS和其他LAI方法均比常规冲洗去除更多的玷污层
[23] PIPS、Er: YAG、CI 单根牙 30 20 mJ、15 Hz、
0.3 W、50 μs
30 s 生理盐水 扫描电子显微镜 PIPS和Preciso工作尖激活生理盐水没有增强玷污层的去除效果
[10] PIPS 单根牙 86 10/20 mJ、
0.15/0.3 W
150 s 1%、3%、5% NaClO,17% EDTA 菌落计数和扫描电子显微镜 PIPS激活5% NaClO体现出良好的细菌杀灭和玷污层去除效果
[24] PIPS、Er: YAG 单根牙 81 0.3、0.6、0.9 W 10 g·L-1 NaClO 扫描电子显微镜和根尖染料浸润 0.3 W的模式下能良好地清理玷污层,与其他实验组无明显差异
[25] PIPS、PUI 单根牙 16 52 20/30 mJ、15/30 Hz、0.3/0.9 W、50 μs 1 min 1% NaClO 扫描电子显微镜 2种功率的PIPS均能有效去除玷污层,效果无明显差异
[30] PIPS、Nd: YAG、CI 单根牙 30 40 mJ、20 Hz 5 s×3次 5.25% NaClO、17% EDTA 扫描电子显微镜 PIPS体现出良好的玷污层去除效果
[31] PIPS、Nd: YAG、Er, Cr: YSGG、CI 单根牙 96 20 mJ、15 Hz、
0.3 W
80 s 2.5% NaClO、17% EDTA、蒸馏水 扫描电子显微镜 PIPS和其他LAI方法均比常规冲洗去除更多的玷污层
[32] PIPS、Xpulse 单根牙 18 10/24 mJ、10 Hz 10 s 5.25% NaClO 扫描电子显微镜 24 mJ的PIPS具有良好的玷污层去除效果
[33] PIPS、CI 单根牙 64 20 mJ、50 Hz、
0.3 W、50 μs
30 s×2次 20 % EDTA 扫描电子显微镜 PIPS没有提高玷污层去除水平
[34] PIPS、Er: YAG、SI、CI 单根牙 16 64 20 mJ、15 Hz、
0.3 W
20 s×3次 Qmix 扫描电子显微镜 PIPS和SI去除玷污层效果均优于CI
[35] PIPS、ANP、CI 单根牙 17 142 20 mJ、15 Hz、
0.3 W、50 μs
30 s×2次 5% NaClO、17% EDTA 扫描电子显微镜 PIPS、ANP、CI去除玷污层的效果差异无统计学意义
[36] PIPS 单根牙 80 20 mJ、15 Hz、
0.3 W、50 μs
30 s 17% EDTA 扫描电子显微镜 PIPS体现出良好的玷污层去除效果

Tab 4

Summary of literature on the effect of PIPS on dentin debris removal"

参考文献 研究对象 根管弯曲度 牙齿类型 根长 总样本量 PIPS参数
设置
PIPS荡洗时间 冲洗液 检测方法 作者结论
[28] PIPS、Er: YAG、UAI 下颌磨牙近中根 69 20 mJ、20 Hz、50 μs 20 s×3次 2.5% NaClO micro-CT PIPS与其他组均能有效清除根管内碎屑,但是都未完全去除
[38] PIPS、SNI 下颌磨牙近中根 16 20 mJ、15 Hz、0.3 W 2 min 6% NaClO、17% EDTA micro-CT PIPS能有效清除根管内碎屑,清除量是SNI的2.6倍
[26] PIPS、Er: YAG、UAI、MAI、CI 有根管峡部的磨牙 50 20 mJ、20 Hz、50 μs 20 s×3次 2.5% NaClO 显微镜下拍照、碎屑评分 激光组比CI更能有效去除根管内碎屑
[27] PIPS 单根牙 12 20 mJ、15 Hz、0.3 W 10~30 s 2.5% NaClO micro-CT PIPS可以增强根管内碎屑去除能力

Tab 5

Summary of the literature on the effect of PIPS in removing drugs in the root canal"

参考文献 研究对象 根管弯曲度 牙齿类型 根长 总样本量 PIPS参数设置 PIPS荡洗时间 冲洗液 检测方法 作者结论
[8] PIPS 单根牙 36 20 mJ、15 Hz、50 μs、0.3 W 60 s 2.5% NaClO micro-CT PIPS能有效去除根管内药物
[19] PIPS、LD、Nd: YAG、Er: YAG、ANP、PUI、CI 单根牙 80 20 mJ、15 Hz、0.3 W、50 μs 20 s 17% EDTA 纤维桩粘接强度测试 PIPS去除纤维桩效果最佳
[29] PIPS、PUI、CI 下颌磨牙winne Ⅱ型根管 30 20 mJ、15 Hz 2 min 8.25% NaClO、17% EDTA micro-CT PIPS去除根管内药物作用更好

Tab 6

Summary of related literature on the effect of PIPS on dentinal tubule penetration"

参考文献 研究对象 根管弯曲度 牙齿类型 根长/mm 总样本量 PIPS参数设置 PIPS荡洗时间/s 冲洗液 检测方法 作者结论
[41] PIPS、Er: YAG、PUI、SI、CI 单根圆形根管 65 30 mJ、30 Hz、
0.9 W
60 5% NaClO 激光共聚焦显微镜 PIPS能够增加牙本质小管的渗透性
[42] PIPS、PUI、CI 单根圆形根管 156 30 mJ、30 Hz、
0.9 W
60 5% NaClO 激光共聚焦显微镜 PIPS和PUI相比于CI均能够增加牙本质小管的渗透性
[35] PIPS、ANP、CI 单根牙 17 142 20 mJ、15 Hz、
0.3 W、50 μs
30 5% NaClO 扫描电子显微镜、激光共聚焦显微镜 PIPS增加牙本质小管渗透性且能去除更多的玷污层
[1] 刘正. 感染根管的细菌学研究[J]. 国外医学·口腔医学分册, 1982, 9(6):336-339.
Liu Z. Bacteriological study of infected root canals[J]. Foreign Med Sci (Stomatol), 1982, 9(6):336-339.
[2] Santos AL, Siqueira JF, Rôças IN, et al. Comparing the bacterial diversity of acute and chronic dental root canal infections[J]. PLoS One, 2011, 6(11):e28088.
doi: 10.1371/journal.pone.0028088
[3] 周学东. 成人根管系统形态与根管治疗难度评估[J]. 中国实用口腔科杂志, 2008, 1(1):5-9.
Zhou XD. Morphology of the adult root canal system and assessment of the difficulty of root canal treat-ment[J]. Chin J Pract Stomatol, 2008, 1(1):5-9.
[4] Arnold M, Ricucci D, Siqueira JF. Infection in a complex network of apical ramifications as the cause of persistent apical periodontitis: a case report[J]. J Endod, 2013, 39(9):1179-1184.
doi: 10.1016/j.joen.2013.04.036
[5] Takahashi K, Machida T, Kimura Y, et al. The morphological study of root canal walls with Er: YAG laser[J]. J Jpn Endod Assoc, 1996, 17(2):197-203.
[6] Roper MJ, White JM, Goodis HE, et al. Two-dimensional changes and surface characteristics from an erbium laser used for root canal preparation[J]. Lasers Surg Med, 2010, 42(5):379-383.
doi: 10.1002/lsm.20918 pmid: 20583251
[7] Ozses Ozkaya B, Gulsahi K, Ungor M, et al. A comparison of Er: YAG laser with photon-initiated photoacoustic streaming, Nd: YAG laser, and conventional irrigation on the eradication of root dentinal tubule infection by Enterococcus faecalis biofilms: a scanning electron microscopy study[J]. Scanning, 2017, 2017:6215482.
doi: 10.1155/2017/6215482 pmid: 29279728
[8] Suk M, Bago I, Katić M, et al. The efficacy of photon-initiated photoacoustic streaming in the removal of calcium silicate-based filling remnants from the root canal after rotary retreatment[J]. Lasers Med Sci, 2017, 32(9):2055-2062.
doi: 10.1007/s10103-017-2325-4
[9] Swimberghe RCD, Coenye T, De Moor RJG, et al. Biofilm model systems for root canal disinfection: a literature review[J]. Int Endod J, 2019, 52(5):604-628.
doi: 10.1111/iej.13050 pmid: 30488449
[10] Golob BS, Olivi G, Vrabec M, et al. Efficacy of photon-induced photoacoustic streaming in the reduction of Enterococcus faecalis within the root canal: different settings and different sodium hypochlorite concentrations[J]. J Endod, 2017, 43(10):1730-1735.
doi: 10.1016/j.joen.2017.05.019
[11] Al Shahrani M, DiVito E, Hughes CV , et al. Enhanced removal of Enterococcus faecalis biofilms in the root canal using sodium hypochlorite plus photon-induced photoacoustic streaming: an in vitro study[J]. Photomed Laser Surg, 2014, 32(5):260-266.
doi: 10.1089/pho.2014.3714
[12] Balić M, Lucić R, Mehadžić K, et al. The efficacy of photon-initiated photoacoustic streaming and so-nic-activated irrigation combined with QMiX solution or sodium hypochlorite against intracanal E. faecalis biofilm[J]. Lasers Med Sci, 2016, 31(2):335-342.
doi: 10.1007/s10103-015-1864-9
[13] Pedullà E, Genovese C, Campagna E, et al. Decontamination efficacy of photon-initiated photoacoustic streaming (PIPS) of irrigants using low-energy laser settings: an ex vivo study[J]. Int Endod J, 2012, 45(9):865-870.
doi: 10.1111/j.1365-2591.2012.02044.x pmid: 22486805
[14] Olivi G, DiVito E, Peters O, et al. Disinfection efficacy of photon-induced photoacoustic streaming on root canals infected with Enterococcus faecalis: an ex vivo study[J]. J Am Dent Assoc, 2014, 145(8):843-848.
doi: 10.14219/jada.2014.46
[15] Zhu X, Yin X, Chang JW, et al. Comparison of the antibacterial effect and smear layer removal using photon-initiated photoacoustic streaming aided irrigation versus a conventional irrigation in single-rooted canals: an in vitro study[J]. Photomed Laser Surg, 2013, 31(8):371-377.
doi: 10.1089/pho.2013.3515
[16] Wang XL, Cheng XG, Liu X, et al. Bactericidal effect of various laser irradiation systems on Enterococcus faecalis biofilms in dentinal tubules: a confocal laser scanning microscopy study[J]. Photomed Laser Surg, 2018, 36(9):472-479.
doi: 10.1089/pho.2017.4430
[17] Peters OA, Bardsley S, Fong J, et al. Disinfection of root canals with photon-initiated photoacoustic strea-ming[J]. J Endod, 2011, 37(7):1008-1012.
doi: 10.1016/j.joen.2011.03.016 pmid: 21689561
[18] 田甜甜. PIPS-Er: YAG激光在不同根尖终末工作宽度时对根管内粪肠球菌杀灭效果的研究[D]. 西安: 第四军医大学, 2016.
Tian TT. Bactericidal effect of PIPS-Er: YAG laser with different apical terminal working width on Enterococcus faecalis in experimentally infected root canals[D]. Xi’an: The Fourth Military Medical University, 2016.
[19] Akyuz Ekim SN, Erdemir A. Comparison of diffe-rent irrigation activation techniques on smear layer removal: an in vitro study[J]. Microsc Res Tech, 2015, 78(3):230-239.
doi: 10.1002/jemt.v78.3
[20] Doğanay Yıldız E, Dinçer B, Fidan ME. Effect of different laser-assisted irrigation activation techni-ques on apical debris extrusion[J]. Acta Odontol Scand, 2020, 78(5):332-336.
doi: 10.1080/00016357.2020.1717603 pmid: 31986947
[21] Korkut E, Torlak E, Gezgin O, et al. Antibacterial and smear layer removal efficacy of Er: YAG laser irradiation by photon-induced photoacoustic strea-ming in primary molar root canals: a preliminary study[J]. Photomed Laser Surg, 2018, 36(9):480-486.
doi: 10.1089/pho.2017.4369 pmid: 29905503
[22] Keles A, Kamalak A, Keskin C, et al. The efficacy of laser, ultrasound and self-adjustable file in remo-ving smear layer debris from oval root canals follo-wing retreatment: a scanning electron microscopy study[J]. Aust Endod J, 2016, 42(3):104-111.
doi: 10.1111/aej.12145 pmid: 26786709
[23] Sippus J, Gutknecht N. Deep disinfection and tubular smear layer removal with Er: YAG using photon-induced photoacoustic streaming (PIPS) contra laser-activated irrigation (LAI) technics[J]. Lasers Dent Sci, 2019, 3(1):37-42.
doi: 10.1007/s41547-018-0050-3
[24] 孙宁佳, 郭威. Er: YAG激光和超声荡洗对根管内壁形态及微渗漏的比较研究[J]. 牙体牙髓牙周病学杂志, 2017, 27(12):689-697, 712.
Sun NJ, Guo W. Comparison of root canal morpho-logy and microleakage after cleaning with Er: YAG laser and ultrasonic irrigation[J]. Chin J Conserv Dent, 2017, 27(12):689-697, 712.
[25] 刘敏, 彭彬. 两种功率PIPS-Er: YAG激光对根管内玷污层去除效果的比较研究[J]. 口腔医学研究, 2018, 34(10):1067-1071.
Liu M, Peng B. Comparison of photon-initiated photoacoustic streaming with two kinds of power settings on removal of smear layer[J]. J Oral Sci Res, 2018, 34(10):1067-1071.
[26] Passalidou S, Calberson F, de Bruyne M , et al. Debris removal from the mesial root canal system of mandibular molars with laser-activated irrigation[J]. J Endod, 2018, 44(11):1697-1701.
doi: S0099-2399(18)30434-5 pmid: 30241679
[27] Todea C, Mocuta D, Manescu A, et al. Laser use in endodontic for increase the adhesion of root canal filling. A synchrotron radiation micro tomography study[J]. Rev Chim, 2018, 69(8):2144-2149.
doi: 10.37358/RC.18.8.6489
[28] Verstraeten J, Jacquet W, De Moor RJG, et al. Hard tissue debris removal from the mesial root canal system of mandibular molars with ultrasonically and laser-activated irrigation: a micro-computed tomography study[J]. Lasers Med Sci, 2017, 32(9):1965-1970.
doi: 10.1007/s10103-017-2297-4
[29] Lloyd A, Navarrete G, Marchesan MA, et al. Removal of calcium hydroxide from Weine TypeⅡsystems using photon-induced photoacoustic strea-ming, passive ultrasonic, and needle irrigation: a microcomputed tomography study[J]. J Appl Oral Sci, 2016, 24(6):543-548.
doi: S1678-77572016000600543 pmid: 28076457
[30] Sathe S, Hegde V, Jain P, et al. Effectiveness of Er: YAG (PIPS) and Nd: YAG activation on final irri-gants for smear layer removal-SEM observation[J]. J Dent Lasers, 2014, 8(1):8.
doi: 10.4103/0976-2868.134110
[31] Ozbay Y, Erdemir A. Effect of several laser systems on removal of smear layer with a variety of irrigation solutions[J]. Microsc Res Tech, 2018, 81(10):1214-1222.
doi: 10.1002/jemt.v81.10
[32] Luca R, Carmen Todea MD, Bălăbuc C, et al. Alternative techniques in root canal debridement[C]//Proc SPIE 8925, Fifth International Conference on lasers in medicine: biotechnologies integrated in daily medicine. Berlin: Springer, 2014: 89250F1-89250F7.
[33] Nasher R, Franzen R, Gutknecht N. The effectiveness of the Erbium: Yttrium aluminum garnet PIPS technique in comparison to different chemical solutions in removing the endodontic smear layer-an in vitro profilometric study[J]. Lasers Med Sci, 2016, 31(9):1871-1882.
doi: 10.1007/s10103-016-2063-z
[34] Akcay M, Arslan H, Durmus N, et al. Dentinal tubule penetration of AH Plus, iRoot SP, MTA fillapex, and guttaflow bioseal root canal sealers after different final irrigation procedures: a confocal microscopic study[J]. Lasers Surg Med, 2016, 48(1):70-76.
doi: 10.1002/lsm.22446
[35] Turkel E, Onay EO, Ungor M. Comparison of three final irrigation activation techniques: effects on canal cleanness, smear layer removal, and dentinal tubule penetration of two root canal sealers[J]. Photomed Laser Surg, 2017, 35(12):672-681.
doi: 10.1089/pho.2016.4234 pmid: 28437194
[36] DiVito E, Peters OA, Olivi G. Effectiveness of the Erbium: YAG laser and new design radial and stripped tips in removing the smear layer after root canal instrumentation[J]. Lasers Med Sci, 2012, 27(2):273-280.
doi: 10.1007/s10103-010-0858-x
[37] Kamaci A, Aydin B, Erdilek N. The effect of ultrasonically activated irrigation and laser based root canal irrigation methods on debris removal[J]. Int J Artif Organs, 2017. doi: 10.5301/ijao.5000646.
doi: 10.5301/ijao.5000646
[38] Lloyd A, Uhles JP, Clement DJ, et al. Elimination of intracanal tissue and debris through a novel laser-activated system assessed using high-resolution micro-computed tomography: a pilot study[J]. J Endod, 2014, 40(4):584-587.
doi: 10.1016/j.joen.2013.10.040 pmid: 24666917
[39] Deleu E, Meire MA, De Moor RJ. Efficacy of laser-based irrigant activation methods in removing debris from simulated root canal irregularities[J]. Lasers Med Sci, 2015, 30(2):831-835.
doi: 10.1007/s10103-013-1442-y
[40] Parčina I, Amižić, Miletić I, et al. Influence of laser activated irrigation with two erbium lasers on bond strength of inidividually formed fiber reinforced composite posts to root canal dentin[J]. Acta Stomatol Croat, 2016, 50(4):321-328.
doi: 10.15644/asc50/4/5 pmid: 28275279
[41] Akcay M, Arslan H, Mese M, et al. Effect of photon-initiated photoacoustic streaming, passive ultraso-nic, and sonic irrigation techniques on dentinal tubule penetration of irrigation solution: a confocal microscopic study[J]. Clin Oral Investig, 2017, 21(7):2205-2212.
doi: 10.1007/s00784-016-2013-y
[42] Miletić I, Chieffi N, Rengo C, et al. Effect of photon induced photoacoustic streaming (PIPS) on bond strength to dentine of two root canal filling materials[J]. Lasers Surg Med, 2016, 48(10):951-954.
doi: 10.1002/lsm.22536 pmid: 27254395
[43] Vidas J, Snjaric D, Braut A, et al. Comparison of apical irrigant solution extrusion among conventio-nal and laser-activated endodontic irrigation[J]. Lasers Med Sci, 2020, 35(1):205-211.
doi: 10.1007/s10103-019-02846-w
[44] Arslan D, Kustarci A. Efficacy of photon-initiated photoacoustic streaming on apically extruded debris with different preparation systems in curved canals[J]. Int Endod J, 2018, 51(Suppl 1):e65-e72.
doi: 10.1111/iej.2018.51.issue-S1
[45] Guneser MB, Arslan D, Usumez A. Tissue dissolution ability of sodium hypochlorite activated by photon-initiated photoacoustic streaming technique[J]. J Endod, 2015, 41(5):729-732.
doi: 10.1016/j.joen.2015.01.014 pmid: 25728817
[46] Kamalak A, Uzun I, Arslan H, et al. Fracture resistance of endodontically retreated roots after retreatment using self-adjusting file, passive ultrasonic irrigation, photon-induced photoacoustic streaming, or laser[J]. Photomed Laser Surg, 2016, 34(10):467-472.
pmid: 27598303
[47] Dagher J, El Feghali R, Parker S, et al. Postoperative quality of life following conventional endodontic intracanal irrigation compared with laser-activa-ted irrigation: a randomized clinical study[J]. Photobiomodul Photomed Laser Surg, 2019, 37(4):248-253.
doi: 10.1089/photob.2018.4558
[48] Azim AA, Aksel H, Zhuang TT, et al. Efficacy of 4 irrigation protocols in killing bacteria colonized in dentinal tubules examined by a novel confocal laser scanning microscope analysis[J]. J Endod, 2016, 42(6):928-934.
doi: 10.1016/j.joen.2016.03.009
[49] Ayranci LB, Arslan H, Akcay M, et al. Effectiveness of laser-assisted irrigation and passive ultrasonic irrigation techniques on smear layer removal in middle and apical thirds[J]. Scanning, 2016, 38(2):121-127.
doi: 10.1002/sca.21247 pmid: 26183211
[50] Jezeršek M, Jereb T, Lukač N, et al. Evaluation of apical extrusion during novel Er: YAG laser-activa-ted irrigation modality[J]. Photobiomodul Photomed Laser Surg, 2019, 37(9):544-550.
doi: 10.1089/photob.2018.4608 pmid: 31335265
[51] Jezeršek M, Lukač N, Lukač M, et al. Measurement of pressures generated in root canal during Er: YAG laser-activated irrigation[J]. Photobiomodul Photo-med Laser Surg, 2020, 38(10):625-631.
[52] 何新宇, 彭丽莉, 王众, 等. 光子引导的光声流效应在根管治疗术中的研究进展[J]. 牙体牙髓牙周病学杂志, 2018, 28(11):673-676, 679.
He XY, Peng LL, Wang Z, et al. Disinfection of root canals with photon-initiated photoacoustic streaming: a review[J]. Chin J Conserv Dent, 2018, 28(11):673-676, 679.
[53] De Moor RJG, Meire M. High-power lasers in en-dodontics-fiber placement for laser-enhanced en-dodontics: in the canal or at the orifice[J]. J Laser Health Acad, 2014, 2014(1):20-28.
[54] 谷苗, 陈兴兴, 林媛, 等. 自制根管润滑剂与不同浓度次氯酸钠液组合对粪肠球菌感染根管壁的清洁效果[J]. 牙体牙髓牙周病学杂志, 2009, 19(5):275-279.
Gu M, Chen XX, Lin Y, et al. Cleaning efficacy of a self-made lubricant combined with different concen-trations of NaClO on root canal walls infected by Enterococcus faecalis[J]. Chin J Conserv Dent, 2009, 19(5):275-279.
[55] da Silva LA, Nelson-Filho P, Faria G, et al. Bacterial profile in primary teeth with necrotic pulp and periapical lesions[J]. Braz Dent J, 2006, 17(2):144-148.
doi: 10.1590/S0103-64402006000200012
[56] Dönmez Özkan H, Kaval ME, Özkan G, et al. Efficacy of two different nickel-titanium rotary systems in retreatment procedure with or without laser-activated irrigation: an in vitro study[J]. Photobiomodul Photomed Laser Surg, 2019, 37(8):495-499.
doi: 10.1089/photob.2019.4637
[57] Mamootil K, Messer HH. Penetration of dentinal tubules by endodontic sealer cements in extracted teeth and in vivo[J]. Int Endod J, 2007, 40(11):873-881.
pmid: 17764458
[58] Lin ZM, Ling JQ, Fang JY, et al. Physicochemical properties, sealing ability, bond strength and cytoto-xicity of a new dimethacrylate-based root canal sealer[J]. J Formos Med Assoc, 2010, 109(11):819-827.
doi: 10.1016/S0929-6646(10)60127-1
[59] Abbaszadeh HA, Peyvandi AA, Peyvandi AA, et al. Er: YAG laser and cyclosporine-a effect on cell cycle regulation of human gingival fibroblast cells[J]. J Lasers Med Sci, 2017, 8(3):143-149.
doi: 10.15171/jlms.2017.26
[60] Lukac N, Muc BT, Jezersek M, et al. Photoacoustic endodontics using the novel SWEEPS Er: YAG laser modality[J]. J Laser Health Acad, 2017, 2047(1):1-7.
[1] Tan Yongzhen,Liang Xinhua. Research progress on the antibacterial mechanism of oral local anesthetics [J]. Int J Stomatol, 2024, 51(1): 74-81.
[2] Sun Xu,Deng Zhennan,Wen Cai,Zhao Ying. Implant surface micromorphological changes after Er: YAG laser irradiation observed under scanning electron microscope [J]. Int J Stomatol, 2023, 50(6): 669-673.
[3] Wu Sijia,Shu Chang,Wang Yang,Wang Yuan,Deng Shuli,Wang Huiming.. Effect and research progress on root canal infection management of regenerative endodontic procedure in immature permanent teeth [J]. Int J Stomatol, 2023, 50(4): 388-394.
[4] Gao Yutian,Su Qin. Research and application of electrolyzed-oxidizing water in the field of root canal treatment [J]. Int J Stomatol, 2023, 50(4): 401-406.
[5] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[6] Wang Luxuan,Hou Benxiang.. Effect of residual calcium hydroxide in root canal on root canal treatment [J]. Int J Stomatol, 2022, 49(3): 367-372.
[7] Yang Jiazhen,Zhang Ying,Liu Yuhan,Li Fan,Zeng Fei,Li Xiuzhen,Ma Yuying,Yang Fang. Time variation trend of bacterial community in oral diagnosis and treatment environment [J]. Int J Stomatol, 2022, 49(2): 132-137.
[8] Ji Xiao,Jing Fangqi,Li Ya,Xue Jing. Data simulation optimization of root canal preparation sequence [J]. Int J Stomatol, 2022, 49(1): 37-47.
[9] Zhang Shan,Shen Shuping,Zhang Fang,Yang Weidong. Effect of photon-initiated photoacoustic streaming Er: YAG laser on the water loss of dentin and compressive strength of root [J]. Int J Stomatol, 2022, 49(1): 55-59.
[10] Huang Peiqing,Peng Xian,Xu Xin. Volatile sulfur compounds and its role in the management of intra-oral halitosis [J]. Int J Stomatol, 2021, 48(5): 592-599.
[11] Li Mixuezi,Zhang Chen. Clinical consideration on the application of computer-aided design/computer-aided manufacturing endocrown in molar restoration after root canal therapy [J]. Int J Stomatol, 2021, 48(3): 274-279.
[12] Li Shijia,Chen Qiuyu,Zou Jing,Huang Ruijie. Effect of nicotine on the growth of oral bacteria in single or mixed species [J]. Int J Stomatol, 2021, 48(3): 305-311.
[13] Zhu Junjin,Wang Jian.. Advances in the loading methods of silver nanoparticles on the surface of titanium implants [J]. Int J Stomatol, 2021, 48(3): 334-340.
[14] Yi Zumu,Wang Xinyu,Wu Yingying. Bacterial diversity of oral flora in patients with diabetes [J]. Int J Stomatol, 2020, 47(5): 522-529.
[15] Tan Kaixuan,Li Fan,Zhang Lijuan,Li Shanshan,Lu Jie,Zhang Ying,Yang Fang. Root canal retreatment with subcutaneous emphysema: a case report [J]. Int J Stomatol, 2020, 47(5): 563-566.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .