Int J Stomatol ›› 2021, Vol. 48 ›› Issue (3): 274-279.doi: 10.7518/gjkq.2021056

• Prosthodontics • Previous Articles     Next Articles

Clinical consideration on the application of computer-aided design/computer-aided manufacturing endocrown in molar restoration after root canal therapy

Li Mixuezi(),Zhang Chen()   

  1. Dept. of Endodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
  • Received:2020-10-07 Revised:2021-02-13 Online:2021-05-01 Published:2021-05-14
  • Contact: Chen Zhang;
  • Supported by:
    Scientific Research Cultivation Program of Beijing Hospital Authority(pX2019055);Clini-cal Research Fund of Young Scientists for Ceramic Materials of Chinese Stomatological Association(CSA-P2019-06)


The timely and reasonable tooth restoration for endodontically treated teeth is significant for the success of root canal treatment. With the development of bonding technology and restoration materials, computer-aided design/computer-aided manufacturing endocrown is increasingly used in the restoration of endodontically treated molars. In particular, molars are characterized by relatively thick cervical dentin, large pulp cavity, and relatively low clinical crown, which provide favorable conditions for the adhesion and retention of the endocrown and can resist lateral forces. This article reviews the characteristics, advantages, mechanical properties, details of clinical operations of the endocrown, and clinical efficacy to provide a reference for clinical application.

Key words: endocrown, root canal treatment, biomechanics

CLC Number: 

  • R783.3

[1] Belleflamme MM, Geerts SO, Louwette MM, et al. No post-no core approach to restore severely dama-ged posterior teeth: an up to 10-year retrospective study of documented endocrown cases[J]. J Dent, 2017,63:1-7.
doi: S0300-5712(17)30093-3 pmid: 28456557
[2] Fages M, Raynal J, Tramini P, et al. Chairside computer-aided design/computer-aided manufacture all-ceramic crown and endocrown restorations: a 7-year survival rate study[J]. Int J Prosthodont, 2017,30(6):556-560.
doi: 10.11607/ijp.5132
[3] Sedrez-Porto JA, Rosac WL, da Silva AF, et al. Endocrown restorations: a systematic review and meta-analysis[J]. J Dent, 2016,52:8-14.
doi: 10.1016/j.jdent.2016.07.005 pmid: 27421989
[4] Bindl A, Mörmann WH. Clinical evaluation of adhesively placed Cerec endo-crowns after 2 years: preliminary results[J]. J Adhes Dent, 1999,1(3):255-265.
pmid: 11725673
[5] Dietschi D, Duc O, Krejci I, et al. Biomechanical considerations for the restoration of endodontically treated teeth: a systematic review of the literature: part 1. Composition and micro-and macrostructure alterations[J]. Quintessence Int, 2007,38(9):733-743.
pmid: 17873980
[6] Reeh ES, Messer HH, Douglas WH. Reduction in tooth stiffness as a result of endodontic and restorative procedures[J]. J Endod, 1989,15(11):512-516.
doi: 10.1016/S0099-2399(89)80191-8
[7] Soares PV, Santos-Filho PC, Martins LR, et al. Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part Ⅰ: fracture resistance and fracture mode[J]. J Prosthet Dent, 2008,99(1):30-37.
doi: 10.1016/S0022-3913(08)60006-2
[8] Clark D, Khademi JA. Case studies in modern molar endodontic access and directed dentin conservation[J]. Dent Clin North Am, 2010,54(2):275-289.
doi: 10.1016/j.cden.2010.01.003
[9] Krishnan U, Moule A, Michael S, et al. Fractogra-phic analysis of a split tooth presenting radiographically as a horizontal root fracture in an unrestored mandibular second molar[J]. J Endod, 2018,44(2):304-311.
doi: S0099-2399(17)31190-1 pmid: 29275853
[10] Pissis P. Fabrication of a metal-free ceramic restoration utilizing the monobloc technique[J]. Pract Periodontics Aesthet Dent, 1995,7(5):83-94.
pmid: 7548896
[11] 高学军, 岳林. 牙体牙髓病学[M]. 北京: 北京大学医学出版社, 2013: 305-306.
Gao XJ, Yue L. Cariology, endodontology and opera-tive dentistry[M]. Beijing: Peking University Medical Press, 2013: 305-306.
[12] Decerle N, Bessadet M, Munoz-Sanchez ML, et al. Evaluation of Cerec endocrowns: a preliminary cohort study[J]. Eur J Prosthodont Restor Dent, 2014,22(2):89-95.
pmid: 25134368
[13] Griffin JD Jr. CAD/CAM restorations: achieving excellence and simplicity[J]. Dent Today, 2016,35(11):96,98-100.
[14] Chen BW, Ma YZ, Wu KX, et al. Influence of various materials on biomechanical behavior of endocrown-restored, endodontically-treated mandibular first molar: a 3D-finite element analysis[J]. J Wuhan Univ Technol (Mater Sci Ed), 2015,30(3):643-648.
[15] Skupien JA, Luz MS, Pereira-Cenci T. Ferrule effect: a meta-analysis[J]. JDR Clin Trans Res, 2016,1(1):31-39.
doi: 10.1177/2380084416636606 pmid: 30931698
[16] Bindl A, Richter B, Mörmann WH. Survival of ceramic computer-aided design/manufacturing crowns bonded to preparations with reduced macroretention geometry[J]. Int J Prosthodont, 2005,18(3):219-224.
[17] 翟晓阳, 张静亚, 张三柯, 等. 两种边缘设计的髓腔固位冠修复不同缺损下颌第一磨牙的有限元分析[J]. 华西口腔医学杂志, 2019,37(5):480-484.
Zhai XY, Zhang JY, Zhang SK, et al. Finite-element analysis of mandibular first molar with two marginal designs of endocrown for the repair of different defe-cts[J]. West China J Stomatol, 2019,37(5):480-484.
[18] Otto T. Computer-aided direct all-ceramic crowns: preliminary 1-year results of a prospective clinical study[J]. Int J Periodontics Restorative Dent, 2004,24(5):446-455.
doi: 10.11607/prd.00.0601
[19] Otto T, Mörmann WH. Clinical performance of chairside CAD/CAM feldspathic ceramic posterior shoulder crowns and endocrowns up to 12 years[J]. Int J Comput Dent, 2015,18(2):147-161.
pmid: 26110927
[20] Al-Dabbagh RA. Survival and success of endocrow-ns: a systematic review and meta-analysis[J]. J Prosthet Dent, 2020:S0022-S3913(20)30079-2.
[21] Sanchez Blanco I, Sauco Marquez JJ, Montero Miralles P, et al. Endocrown, alternative to full coverage crowns: a case report[J]. J Clin Exp Dent, 2017: S56-56.
[22] Botto EB, Barón R, Borgia JL. Endocrown: a retrospective patient series study, in a 8 to 19-year period[J]. Odontoestomatología, 2016,18(28):48-59.
[23] Dogui H, Abdelmalek F, Amor A, et al. Endocrown: an alternative approach for restoring endodontically treated molars with large coronal destruction[J]. Case Rep Dent, 2018,2018:1581952.
[24] Tzimas K, Tsiafitsa M, Gerasimou P, et al. Endocrown restorations for extensively damaged posterior teeth: clinical performance of three cases[J]. Restor Dent Endod, 2018,43(4):e38.
doi: 10.5395/rde.2018.43.e38
[25] Gonzalez Acosta L, Castelo Baz P, Bahillo Varela J, et al. Posterior tooth restoration with endocrown: a case report[J]. J Clin Exp Dent, 2017: S55.
[26] Zoidis P, Bakiri E, Polyzois G. Using modified polyetheretherketone (PEEK) as an alternative material for endocrown restorations: a short-term clinical report[J]. J Prosthet Dent, 2017,117(3):335-339.
doi: 10.1016/j.prosdent.2016.08.009
[27] El Ghoul W, Özcan M, Silwadi M, et al. Fracture resistance and failure modes of endocrowns manufactured with different CAD/CAM materials under axial and lateral loading[J]. J Esthet Restor Dent, 2019,31(4):378-387.
doi: 10.1111/jerd.12486 pmid: 31067007
[28] Biacchi GR, Basting RT. Comparison of fracture str-ength of endocrowns and glass fiber post-retained conventional crowns[J]. Oper Dent, 2012,37(2):130-136.
doi: 10.2341/11-105-L pmid: 21942234
[29] Forberger N, Göhring TN. Influence of the type of post and core on in vitro marginal continuity, fracture resistance, and fracture mode of lithia disilicate-based all-ceramic crowns[J]. J Prosthet Dent, 2008,100(4):264-273.
doi: 10.1016/S0022-3913(08)60205-X pmid: 18922255
[30] Al shibri S, Elguindy J. Fracture resistance of endodontically treated teeth restored with lithium disilicate crowns retained with fiber posts compared to lithium disilicate and cerasmart endocrowns: in vitro study[J]. Dentistry, 2017,7(12):1-9.
[31] Dejak B, Młotkowski A. 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation[J]. Dent Mater, 2013,29(12):e309-e317.
doi: 10.1016/
[32] Helal MA, Wang ZG. Biomechanical assessment of restored mandibular molar by endocrown in comparison to a glass fiber post-retained conventional crown: 3D finite element analysis[J]. J Prosthodont, 2019,28(9):988-996.
doi: 10.1111/jopr.v28.9
[33] Hasan I, Frentzen M, Utz KH, et al. Finite element analysis of adhesive endo-crowns of molars at different height levels of buccally applied load[J]. J Dent Biomech, 2012,3:1758736012455421.
[34] Hayes A, Duvall N, Wajdowicz M, et al. Effect of endocrown pulp chamber extension depth on molar fracture resistance[J]. Oper Dent, 2017,42(3):327-334.
doi: 10.2341/16-097-L pmid: 28467258
[35] Dartora NR, de Conto Ferreira MB, Moris ICM, et al. Effect of intracoronal depth of teeth restored with endocrowns on fracture resistance: in vitro and 3-dimensional finite element analysis[J]. J Endod, 2018,44(7):1179-1185.
doi: S0099-2399(18)30246-2 pmid: 29866407
[36] Tribst JPM, Dal Piva AMO, Madruga CFL, et al. Endocrown restorations: influence of dental remnant and restorative material on stress distribution[J]. Dent Mater, 2018,34(10):1466-1473.
doi: 10.1016/
[37] Shin Y, Park S, Park JW, et al. Evaluation of the marginal and internal discrepancies of CAD-CAM endocrowns with different cavity depths: an in vitro study[J]. J Prosthet Dent, 2017,117(1):109-115.
doi: 10.1016/j.prosdent.2016.03.025
[38] Gaintantzopoulou MD, El-Damanhoury HM. Effect of preparation depth on the marginal and internal adaptation of computer-aided design/computer-assisted manufacture endocrowns[J]. Oper Dent, 2016,41(6):607-616.
pmid: 27379835
[39] Tribst JPM, dal Piva AMDO, Madruga CFL, et al. The impact of restorative material and ceramic thickness on CAD\CAM endocrowns[J]. J Clin Exp Dent, 2019,11(11):e969-e977.
[40] da Cunha LF, Gonzaga CC, Pissaia JF, et al. Lithium silicate endocrown fabricated with a CAD-CAM system: a functional and esthetic protocol[J]. J Prosthet Dent, 2017,118(2):131-134.
doi: 10.1016/j.prosdent.2016.10.006
[41] Kim JH, Cho BH, Lee JH, et al. Influence of preparation design on fit and ceramic thickness of CEREC 3 partial ceramic crowns after cementation[J]. Acta Odontol Scand, 2015,73(2):107-113.
doi: 10.3109/00016357.2014.956145
[42] Fages M, Bennasar B. The endocrown: a different ty-pe of all-ceramic reconstruction for molars[J]. J Can Dent Assoc, 2013,79:d140.
[43] Zhu JX, Wang DM, Rong QG, et al. Effect of central retainer shape and abduction angle during preparation of teeth on dentin and cement layer stress distributions in endocrown-restored mandibular molars[J]. Dent Mater J, 2020,39(3):464-470.
doi: 10.4012/dmj.2019-050
[44] Einhorn M, DuVall N, Wajdowicz M, et al. Preparation ferrule design effect on endocrown failure resistance[J]. J Prosthodont, 2019,28(1):e237-e242.
doi: 10.1111/jopr.12671
[45] Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic[J]. Dent Mater, 2016,32(7):908-914.
doi: 10.1016/
[46] El Ghoul W, Özcan M, Silwadi M, et al. Fracture resistance and failure modes of endocrowns manufactured with different CAD/CAM materials under axial and lateral loading[J]. J Esthet Restor Dent, 2019,31(4):378-387.
doi: 10.1111/jerd.12486 pmid: 31067007
[47] Zhu JX, Rong QG, Wang XY, et al. Influence of remaining tooth structure and restorative material type on stress distribution in endodontically treated maxi-llary premolars: a finite element analysis[J]. J Prosthet Dent, 2017,117(5):646-655.
doi: 10.1016/j.prosdent.2016.08.023
[48] El-Damanhoury HM, Haj-Ali RN, Platt JA. Fracture resistance and microleakage of endocrowns utilizing three CAD-CAM blocks[J]. Oper Dent, 2015,40(2):201-210.
doi: 10.2341/13-143-L
[49] Dartora G, Rocha Pereira GK, Varella de Carvalho R, et al. Comparison of endocrowns made of lithium disilicate glass-ceramic or polymer-infiltrated cera-mic networks and direct composite resin restorations: fatigue performance and stress distribution[J]. J Mech Behav Biomed Mater, 2019,100:103401.
doi: 10.1016/j.jmbbm.2019.103401
[50] Kurtulmus-Yilmaz S, Cengiz E, Ongun S, et al. The effect of surface treatments on the mechanical and optical behaviors of CAD/CAM restorative materials[J]. J Prosthodont, 2019,28(2):e496-e503.
doi: 10.1111/jopr.12749 pmid: WOS:000458904300025
[1] Wang Luxuan,Hou Benxiang.. Effect of residual calcium hydroxide in root canal on root canal treatment [J]. Int J Stomatol, 2022, 49(3): 367-372.
[2] Ji Xiao,Jing Fangqi,Li Ya,Xue Jing. Data simulation optimization of root canal preparation sequence [J]. Int J Stomatol, 2022, 49(1): 37-47.
[3] He Rong,Liu Xuejun,Zhou Yukun. Systematic review on the effect of photon-initiated photoacoustic streaming in endodontic irrigation [J]. Int J Stomatol, 2021, 48(6): 644-655.
[4] Tan Kaixuan,Li Fan,Zhang Lijuan,Li Shanshan,Lu Jie,Zhang Ying,Yang Fang. Root canal retreatment with subcutaneous emphysema: a case report [J]. Int J Stomatol, 2020, 47(5): 563-566.
[5] Xu Qing’an,Fan Mingwen. Non-instrumental technique and multi-acoustic ultra-clean system for root-canal treatment [J]. Int J Stomatol, 2019, 46(5): 522-525.
[6] Huang Lidong, Gong Weiyu, Dong Yanmei.. Research progress on root canal irrigation [J]. Inter J Stomatol, 2018, 45(4): 465-472.
[7] Li Ruhuang, Wang Xiao.. Research progress on prognosis factors of endodontic surgery [J]. Inter J Stomatol, 2016, 43(6): 721-724.
[8] Shan Zhiyi, Xu Ziqing, Shen Gang. Research progress on three-dimensional finite-element analysis method for lingual orthodontics [J]. Inter J Stomatol, 2016, 43(5): 560-564.
[9] Zou Huiru, Qin Zongchang. Research progress on root canal configuration of mandibular anterior teeth [J]. Inter J Stomatol, 2016, 43(3): 325-328.
[10] Xie Kexian, Wang Xiao, Li Yuangao, Zhang Ping.. Treatment of internal root resorption with calcific mass deposition [J]. Inter J Stomatol, 2015, 42(6): 628-630.
[11] Xie Yijia1,2, Chen Yaqun1, Zhao Qing1. Research progress on invisalign-related biomechanics and clinic cases [J]. Inter J Stomatol, 2015, 42(4): 439-441.
[12] Tan Yongmei, Zhao Shaoping, Yan Wenjuan, Zhang Hailan, Lü Wenjie, Zhou Lijuan. Comparison of short period postoperative clinical efficacy between single-visit root canal treatment and two-visit root canal treatment [J]. Inter J Stomatol, 2014, 41(3): 277-280.
[13] Lü Jingjing, Mi Congbo. Research progress on biomechanics of periodontal ligament [J]. Inter J Stomatol, 2014, 41(3): 362-364.
[14] Wu Xingchen, Zhu Yaqin. Characteristics and evaluation of the clinical application of a self-adjusting file [J]. Inter J Stomatol, 2013, 40(6): 764-768.
[15] Wu Zhifang, Lei Yonghua. Application and prospect of three-dimensional finite analysis in orthodontics [J]. Inter J Stomatol, 2013, 40(6): 804-807.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .