Int J Stomatol ›› 2023, Vol. 50 ›› Issue (4): 388-394.doi: 10.7518/gjkq.2023053

• Cariology and Endodontics • Previous Articles     Next Articles

Effect and research progress on root canal infection management of regenerative endodontic procedure in immature permanent teeth

Wu Sijia(),Shu Chang,Wang Yang,Wang Yuan,Deng Shuli,Wang Huiming.()   

  1. Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
  • Received:2022-09-02 Revised:2023-03-02 Online:2023-07-01 Published:2023-06-21
  • Contact: Huiming. Wang E-mail:22018586@zju.edu.cn;whmwhm@zju.edu.cn
  • Supported by:
    “Pioneer” and “Leading Goose” Research and Development Program in Zhe-jiang Province(2022C03060)

Abstract:

Root canal infection management is a crucial step in regenerative endodontic procedure (REP), which include root canal irrigation and intracanal medicaments. Various factors, such as residual microorganisms or the cytotoxicity of root canal irrigants and drugs, affect the outcomes of REP. Scholars should search for an optimum infection management remedy to acquire sufficient antimicrobial efficacy and proper environment for tissue regeneration. The development of novel canal irrigants and irrigation techniques and the exploration of novel antibacterial scaffold can alleviate the adverse effects of REP. This article intends to discuss the influences of infection management on REP and elucidate its promising advances.

Key words: regenerative endodontic procedure, infection management, residual microorganism, cytotoxicity, antibacterial efficacy

CLC Number: 

  • R 781.33

TrendMD: 
1 Namour M, Theys S. Pulp revascularization of immature permanent teeth: a review of the literature and a proposal of a new clinical protocol[J]. Sci World J, 2014, 2014: 737503.
2 Krupińska AM, Skośkiewicz-Malinowska K, Staniowski T. Different approaches to the regeneration of dental tissues in regenerative endodontics[J]. Appl Sci (Basel), 2021, 11(4): 1699.
3 Torabinejad M, Nosrat A, Verma P, et al. Regenerative endodontic treatment or mineral trioxide aggregate apical plug in teeth with necrotic pulps and open apices: a systematic review and meta-analysis[J]. J Endod, 2017, 43(11): 1806-1820.
4 Almutairi W, Yassen GH, Aminoshariae A, et al. Regenerative endodontics: a systematic analysis of the failed cases[J]. J Endod, 2019, 45(5): 567-577.
5 Lin LM, Shimizu E, Gibbs JL, et al. Histologic and histobacteriologic observations of failed revascula-rization/revitalization therapy: a case report[J]. J Endod, 2014, 40(2): 291-295.
6 Chaniotis A. Treatment options for failing regenerative endodontic procedures: report of 3 cases[J]. J Endod, 2017, 43(9): 1472-1478.
7 Kakoli P, Nandakumar R, Romberg E, et al. The effect of age on bacterial penetration of radicular dentin[J]. J Endod, 2009, 35(1): 78-81.
8 李燕. 根管治疗后再感染的原因与预防[J]. 中医临床研究, 2011, 3(10): 116-117.
Li Y. Cause and prevention of re-infection following root canal therapy[J]. Clin J Chin Med, 2011, 3(10): 116-117.
9 李转转, 格根塔娜. 牙髓血运重建术根管冲洗消毒药物的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 569-577.
Li ZZ, Ge GTN. Research progress on root canal irrigation and disinfection drugs for pulp revascula-rization[J]. Int J Stomatol, 2022, 49(5): 569-577.
10 黄丽东, 宫玮玉, 董艳梅. 根管冲洗的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 465-472.
Huang LD, Gong WY, Dong YM. Research pro-gress on root canal irrigation[J]. Int J Stomatol, 2018, 45(4): 465-472.
11 梁宇红, 岳林. 根管治疗技术之根管的化学预备和消毒[J]. 中华口腔医学杂志, 2019, 54(11): 788-792.
Liang YH, Yue L. Root canal treatment: key steps in root canal irrigation and medicaments[J]. Chin J Stomatol, 2019, 54(11): 788-792.
12 李婧, 王蝶, 薛明. 氢氧化钙糊剂与根管内感染控制[J]. 中国实用口腔科杂志, 2022, 15(3): 265-268.
Li J, Wang D, Xue M. Calcium hydroxide paste and control of root canal infection[J]. Chin J Pract Stomatol, 2022, 15(3): 265-268.
13 Verma P, Nosrat A, Kim JR, et al. Effect of residual bacteria on the outcome of pulp regeneration in vivo [J]. J Dent Res, 2017, 96(1): 100-106.
14 Vishwanat L, Duong R, Takimoto K, et al. Effect of bacterial biofilm on the osteogenic differentiation of stem cells of apical papilla[J]. J Endod, 2017, 43(6): 916-922.
15 Cameron R, Claudia E, Ping W, et al. Effect of a residual biofilm on release of transforming growth factor β1 from dentin[J]. J Endod, 2019, 45(9): 1119-1125.
16 Windley W 3rd, Teixeira F, Levin L, et al. Disinfection of immature teeth with a triple antibiotic paste[J]. J Endod, 2005, 31(6): 439-443.
17 Nagata JY, Soares AJ, Souza-Filho FJ, et al. Microbial evaluation of traumatized teeth treated with triple antibiotic paste or calcium hydroxide with 2% chlorhexidine gel in pulp revascularization[J]. J Endod, 2014, 40(6): 778-783.
18 Orozco EIF, Toia CC, Cavalli D, et al. Effect of passive ultrasonic activation on microorganisms in primary root canal infection: a randomized clinical trial[J]. J Appl Oral Sci, 2020, 28: e20190100.
19 Nakamura VC, Pinheiro ET, Prado LC, et al. Effect of ultrasonic activation on the reduction of bacteria and endotoxins in root canals: a randomized clinical trial[J]. Int Endod J, 2018, 51(): e12-e22.
20 de-Jesus-Soares A, Prado MC, Nardello LCL, et al. Clinical and molecular microbiological evaluation of regenerative endodontic procedures in immature per-manent teeth[J]. J Endod, 2020, 46(10): 1448-1454.
21 Diogenes A, Hargreaves KM. Microbial modulation of stem cells and future directions in regenerative endodontics[J]. J Endod, 2017, 43(9): S95-S101.
22 Petridis X, van der Sluis LWM, Dijkstra RJB, et al. Secreted products of oral bacteria and biofilms impede mineralization of apical papilla stem cells in TLR‑, species‑, and culture-dependent fashion[J]. Sci Rep, 2018, 8(1): 12529.
23 Fehrmann C, Dörfer CE, Fawzy El-Sayed KM. Toll-like receptor expression profile of human stem/progenitor cells form the apical papilla[J]. J Endod, 2020, 46(11): 1623-1630.
24 Fawzy El-Sayed KM, Klingebiel P, Dörfer CE. Toll-like receptor expression profile of human dental pulp stem/progenitor cells[J]. J Endod, 2016, 42(3): 413-417.
25 Mekhemar MK, Adam-Klages S, Kabelitz D, et al. TLR-induced immunomodulatory cytokine expression by human gingival stem/progenitor cells[J]. Cell Immunol, 2018, 326: 60-67.
26 Andrukhov O. Toll-like receptors and dental mesenchymal stromal cells[J]. Front Oral Health, 2021, 2: 648901.
27 Schmalz G, Widbiller M, Galler KM. Signaling mo-lecules and pulp regeneration[J]. J Endod, 2017, 43(9): S7-S11.
28 Mullane EM, Dong Z, Sedgley CM, et al. Effects of VEGF and FGF2 on the revascularization of severed human dental pulps[J]. J Dent Res, 2008, 87(12): 1144-1148.
29 Arany PR, Cho A, Hunt TD, et al. Photoactivation of endogenous latent transforming growth factor-β1 directs dental stem cell differentiation for regeneration[J]. Sci Transl Med, 2014, 6(238): 238ra69.
30 Martin DE, de Almeida JF, Henry MA, et al. Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation[J]. J Endod, 2014, 40(1): 51-55.
31 Ring KC, Murray PE, Namerow KN, et al. The comparison of the effect of endodontic irrigation on cell adherence to root canal dentin[J]. J Endod, 2008, 34(12): 1474-1479.
32 Park M, Pang NS, Jung IY. Effect of dentin treatment on proliferation and differentiation of human dental pulp stem cells[J]. Restor Dent Endod, 2015, 40(4): 290-298.
33 Aspesi M, Kopper PMP, de Carvalho Deluca MC, et al. Cytotoxic, migration, and angiogenic effects of intracanal irrigants on cells involved in revascula-rization of immature teeth[J]. Arch Oral Biol, 2021, 121: 104980.
34 Hashimoto K, Kawashima N, Ichinose S, et al. EDTA treatment for sodium hypochlorite-treated dentin recovers disturbed attachment and induces differentiation of mouse dental papilla cells[J]. J Endod, 2018, 44(2): 256-262.
35 Galler KM, D’Souza RN, Federlin M, et al. Dentin conditioning codetermines cell fate in regenerative endodontics[J]. J Endod, 2011, 37(11): 1536-1541.
36 Galler KM, Krastl G, Simon S, et al. European so-ciety of endodontology position statement: revitali-zation procedures[J]. Int Endod J, 2016, 49(8): 717-723.
37 Jain G, Goel A, Rajkumar B, et al. Evaluation of effectiveness of intracanal medicaments on viability of stem cells of apical papilla[J]. J Pharm Bioallied Sci, 2020, 12(): S228-S232.
38 Althumairy RI, Teixeira FB, Diogenes A. Effect of dentin conditioning with intracanal medicaments on survival of stem cells of apical papilla[J]. J Endod, 2014, 40(4): 521-525.
39 Nosrat A, Homayounfar N, Oloomi K. Drawbacks and unfavorable outcomes of regenerative endodontic treatments of necrotic immature teeth: a literature review and report of a case[J]. J Endod, 2012, 38(10): 1428-1434.
40 Dutta A, Saunders WP. Comparative evaluation of calcium hypochlorite and sodium hypochlorite on soft-tissue dissolution[J]. J Endod, 2012, 38(10): 1395-1398.
41 Alfadda S, Alquria T, Karaismailoglu E, et al. Antibacterial effect and bioactivity of innovative and cu-rrently used intracanal medicaments in regenerative endodontics[J]. J Endod, 2021, 47(8): 1294-1300.
42 Jose J, Palanivelu A, Subbaiyan H. Cytotoxicity evaluation of calcium hypochlorite and other commonly used root canal irrigants against human gingival fibroblast cells: an in vitro evaluation[J]. Dent Med Probl, 2021, 58(1): 31-37.
43 Blattes GB, Mestieri LB, Böttcher DE, et al. Cell migration, viability and tissue reaction of calcium hypochlorite based-solutions irrigants: an in vitro and in vivo study[J]. Arch Oral Biol, 2017, 73: 34-39.
44 Pei YP, Liu H, Yang Y, et al. Biological activities and potential oral applications of N-acetylcysteine: progress and prospects[J]. Oxid Med Cell Longev, 2018, 2018: 2835787.
45 Choi YS, Kim C, Moon JH, et al. Removal and kil-ling of multispecies endodontic biofilms by N-acetylcysteine[J]. Braz J Microbiol, 2018, 49(1): 184-188.
46 Moon JH, Choi YS, Lee HW, et al. Antibacterial effects of N-acetylcysteine against endodontic pathogens[J]. J Microbiol, 2016, 54(4): 322-329.
47 Quah SY, Wu SW, Lui JN, et al. N-acetylcysteine inhibits growth and eradicates biofilm of Enterococcus faecalis [J]. J Endod, 2012, 38(1): 81-85.
48 Zheng R, Tan YJ, Gu MQ, et al. N-acetyl cysteine inhibits lipopolysaccharide-mediated synthesis of interleukin-1β and tumor necrosis factor-α in human periodontal ligament fibroblast cells through nuclear factor-kappa B signaling[J]. Medicine (Baltimore), 2019, 98(40): e17126.
49 Guo L, Zhang H, Li WY, et al. N-acetyl cysteine inhibits lipopolysaccharide-mediated induction of interleukin-6 synthesis in MC3T3-E1 cells through the NF-kB signaling pathway[J]. Arch Oral Biol, 2018, 93: 149-154.
50 Jariyamana N, Chuveera P, Dewi A, et al. Effects of N-acetyl cysteine on mitochondrial ROS, mitochondrial dynamics, and inflammation on lipopolysaccharide-treated human apical papilla cells[J]. Clin Oral Investig, 2021, 25(6): 3919-3928.
51 Weekate K, Chuenjitkuntaworn B, Chuveera P, et al. Alterations of mitochondrial dynamics, inflammation and mineralization potential of lipopolysaccharide-induced human dental pulp cells after exposure to N-acetyl cysteine, biodentine or ProRoot MTA[J]. Int Endod J, 2021, 54(6): 951-965.
52 Prada I, Micó-Muñoz P, Giner-Lluesma T, et al. Update of the therapeutic planning of irrigation and intracanal medication in root canal treatment. A literature review[J]. J Clin Exp Dent, 2019, 11(2): e185-e193.
53 Cohenca N, Heilborn C, Johnson JD, et al. Apical negative pressure irrigation versus conventional irrigation plus triantibiotic intracanal dressing on root canal disinfection in dog teeth[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010, 109(1): e42-e46.
54 Pucinelli CM, Silva LABD, Cohenca N, et al. Apical negative pressure irrigation presents tissue compatibility in immature teeth[J]. J Appl Oral Sci, 2017, 25(6): 612-619.
55 Silva LABD, Linhares ML, Silva RABD, et al. Ne-gative pressure irrigation presents mineralizing potential in dogs’ immature teeth with periapical lesion[J]. Braz Dent J, 2020, 31(1): 37-43.
56 Sousa MGC, Maximiano MR, Costa RA, et al. Nanofibers as drug-delivery systems for infection control in dentistry[J]. Expert Opin Drug Deliv, 2020, 17(7): 919-930.
57 Ribeiro JS, Münchow EA, Ferreira Bordini EA, et al. Antimicrobial therapeutics in regenerative endo-dontics: a scoping review[J]. J Endod, 2020, 46(9S): S115-S127.
58 Karczewski A, Feitosa SA, Hamer EI, et al. Clindamycin-modified triple antibiotic nanofibers: a stain-free antimicrobial intracanal drug delivery system[J]. J Endod, 2018, 44(1): 155-162.
59 Palasuk J, Kamocki K, Hippenmeyer L, et al. Bimix antimicrobial scaffolds for regenerative endodontics[J]. J Endod, 2014, 40(11): 1879-1884.
60 Albuquerque MT, Evans JD, Gregory RL, et al. Antibacterial TAP-mimic electrospun polymer scaffold: effects on P. gingivalis-infected dentin biofilm[J]. Clin Oral Investig, 2016, 20(2): 387-393.
61 Daulbayev C, Sultanov F, Aldasheva M, et al. Nanofibrous biologically soluble scaffolds as an effective drug delivery system[J]. Comptes Rendus Chimie, 2021, 24(1): 1-9.
62 Albuquerque MTP, Nagata J, Bottino MC. Antimicrobial efficacy of triple antibiotic-eluting polymer nanofibers against multispecies biofilm[J]. J Endod, 2017, 43(9): S51-S56.
[1] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[2] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[3] Zhu Junjin,Wang Jian.. Advances in the loading methods of silver nanoparticles on the surface of titanium implants [J]. Int J Stomatol, 2021, 48(3): 334-340.
[4] Chen Xiuchun, Zhang Zhimin, Hong Lihua, Zhang Yaqi, Zheng Peng, Li Wenyue. Cytotoxic mechanism of triethylene glycol dimethacrylate [J]. Inter J Stomatol, 2018, 45(2): 209-213.
[5] Yu Wenwen, Wang Xu, Sun Xinhua. Research progress on biological safety of orthodontic metallic appliance [J]. Inter J Stomatol, 2015, 42(5): 592-596.
[6] Wu Yuhong, Lin Juhong, Zhang Hongmei. Physicochemical and biological properties of Portland cement and mineral trioxide aggregate and their applications [J]. Inter J Stomatol, 2014, 41(6): 699-702.
[7] Yan Wen, Li Wei.. Cytotoxicity and genotoxicity of dental filling materials utilized in endodontic thera [J]. Inter J Stomatol, 2013, 40(5): 608-611.
[8] Liu Panlong1,Zhou Hongyan2,Wang Dongmiao3,Mei Yufeng1.. Research progress on pathogenesis of dental fluorosis [J]. Inter J Stomatol, 2013, 40(1): 94-97.
[9] Zhao Fei, Wang Ge.. Research progress on the cell regulation mechanisms of chronic toxicity of dental casting alloys [J]. Inter J Stomatol, 2012, 39(2): 244-247.
[10] Si Jiawen1, Wan Haoyuan1, Hu Qifan2, Sun Huiqiang1.. Microstructure properties and cytotoxicity of titania and zirconia coating on titanium surface [J]. Inter J Stomatol, 2011, 38(5): 531-534.
[11] FANG Jun-yan, LING Jun-qi. Research progress of resin monomer toxicity mechanism [J]. Inter J Stomatol, 2010, 37(3): 302-302~305.
[12] HUANG Xue-lian, FAN Guo-shu, LI Ji-yao. Application of common cytotoxicity assay in the safety assessment of medicine app [J]. Inter J Stomatol, 2009, 36(4): 413-415,419.
[13] ZHONG Su-lan, YIN Shi-hai. Reconsideration of calcium hydroxide as an intracanal medication [J]. Inter J Stomatol, 2009, 36(3): 307-309.
[14] WANG Li, YIN Shi-hai. Cytotoxicity of dental mater ials used in endodontic ther apy [J]. Inter J Stomatol, 2008, 35(4): 405-405~407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .