Int J Stomatol ›› 2023, Vol. 50 ›› Issue (4): 395-400.doi: 10.7518/gjkq.2023046

• Cariology and Endodontics • Previous Articles     Next Articles

Reduction of the risk of caries after interproximal enamel reduction

Wang Gang(),Chen Zhuo.()   

  1. Dept. of Cariology and Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Pro-vince, Cancer Center of Zhejiang University, Hangzhou 310006, China
  • Received:2022-12-30 Revised:2023-02-15 Online:2023-07-01 Published:2023-06-21
  • Contact: Zhuo. Chen E-mail:gang_wang@zju.edu.cn;zoechen@zju.edu.cn
  • Supported by:
    “Pioneer” and “Leading Goose” Research and Development Program in Zhe-jiang Province(2022C03164)

Abstract:

Interproximal enamel reduction is a procedure where a small amount of enamel is removed from the ad-jacent surfaces of the teeth to relieve mild to moderate dental crowding or to improve the shape of the teeth. However, the increased roughness and decreased mineralization of enamel after the procedure and the hidden anatomical location lead to a significantly higher caries risk and a tendency to develop chalky lesions and even caries. Therefore, it is important to control the risk of caries on the enamel surface after interproximal enamel reduction. At present, there are several clinical measures to reduce the risk of caries after interproximal enamel reduction, including reasonable selection of interproximal enamel reduction instruments, immediate surface polishing, application of fluoride products, resin infiltration repair, and remineralization drug repair. This article reviews the latest research and therapeutic effects of these measures, providing a basis and new ideas for clinical treatment and basic research.

Key words: interproximal enamel reduction, risk of caries, fluoride products, resin infiltration, remineralization

CLC Number: 

  • R 783.5

TrendMD: 
1 Pindoria J, Fleming PS, Sharma PK. Inter-proximal enamel reduction in contemporary orthodontics[J]. Br Dent J, 2016, 221(12): 757-763.
2 Meredith L, Mei L, Cannon RD, et al. Interproximal reduction in orthodontics: why, where, how much to remove[J]. Australas Orthod J, 2017, 33(2): 150-157.
3 Bamashmous MS. Veneer or interproximal enamel reduction[J]. J Contemp Dent Pract, 2018, 19(6): 749-751.
4 Laganà G, Malara A, Lione R, et al. Enamel interproximal reduction during treatment with clear aligners: digital planning versus OrthoCAD analysis[J]. BMC Oral Health, 2021, 21(1): 199.
5 de Felice ME, Nucci L, Fiori A, et al. Accuracy of interproximal enamel reduction during clear aligner treatment[J]. Prog Orthod, 2020, 21(1): 28.
6 郑宇祥, 胡江天. 正畸邻面去釉影响因素的研究进展[J]. 医学综述, 2019, 25(8): 1541-1545.
Zheng YX, Hu JT. Study on influencing factors on thickness of interproximal enamel reduction[J]. Med Recapitul, 2019, 25(8): 1541-1545.
7 Kailasam V, Rangarajan H, Easwaran HN, et al. Proximal enamel thickness of the permanent teeth: a systematic review and meta-analysis[J]. Am J Orthod Dentofacial Orthop, 2021, 160(6): 793-804.e3.
8 Triduo M, Zubizarreta-Macho Á, Pérez-Barquero JA, et al. A novel digital technique to quantify the area and volume of enamel removal after interproximal enamel reduction[J]. Appl Sci, 2021, 11(3): 1274.
9 Hariharan A, Arqub SA, Gandhi V, et al. Evaluation of interproximal reduction in individual teeth, and full arch assessment in clear aligner therapy: digital planning versus 3D model analysis after reduction[J]. Prog Orthod, 2022, 23(1): 9.
10 Kelly AM, Kallistova A, Küchler EC, et al. Measu-ring the microscopic structures of human dental ena-mel can predict caries experience[J]. J Pers Med, 2020, 10(1): 5.
11 Zachrisson BU, Nyøygaard L, Mobarak K. Dental health assessed more than 10 years after interproximal enamel reduction of mandibular anterior teeth[J]. Am J Orthod Dentofacial Orthop, 2007, 131(2): 162-169.
12 Zachrisson BU, Minster L, Ogaard B, et al. Dental health assessed after interproximal enamel reduction: caries risk in posterior teeth[J]. Am J Orthod Dentofacial Orthop, 2011, 139(1): 90-98.
13 Cremonini C, Giannoccaro V, Palone M, et al. In vitro study of tooth surfaces after interproximal ena-mel reduction: extraoral scanner and SEM analysis[J]. Pesqui Bras Odontopediatria Clín Integr, 2021, 21(): e0021.
14 Danesh G, PKK Podstawa, Schwartz CE, et al. Depth of acid penetration and enamel surface roughness associated with different methods of interproximal enamel reduction[J]. PLoS One, 2020, 15(3): e0229595.
15 Ben Mohimd H, Kaaouara Y, Azaroual F, et al. Enamel protection after stripping procedures: an in vivo study[J]. Int Orthod, 2019, 17(2): 243-248.
16 Bayram M, Kusgoz A, Yesilyurt C, et al. Effects of casein phosphopeptide-amorphous calcium phosphate application after interproximal stripping on e-namel surface: an in-vivo study[J]. Am J Orthod Dentofacial Orthop, 2017, 151(1): 167-173.
17 Lin WT, Kitasako Y, Nakashima S, et al. A comparative study of the susceptibility of cut and uncut enamel to erosive demineralization[J]. Dent Mater J, 2017, 36(1): 48-53.
18 Livas C, Jongsma AC, Ren YJ. Enamel reduction techniques in orthodontics: a literature review[J]. Open Dent J, 2013, 7: 146-151.
19 Nassif N, Gholmieh MN, Sfeir E, et al. In vitro Macro-qualitative comparison of three enamel stripping procedures: what is the best shape we can get[J]. Int J Clin Pediatr Dent, 2017, 10(4): 358-362.
20 Banga K, Arora N, Kannan S, et al. Evaluation of temperature rise in the pulp during various IPR techniques-an in vivo study[J]. Prog Orthod, 2020, 21(1): 40.
21 Gazzani F, Lione R, Pavoni C, et al. Comparison of the abrasive properties of two different systems for interproximal enamel reduction: oscillating versus ma-nual strips[J]. BMC Oral Health, 2019, 19(1): 247.
22 Kaaouara Y, Mohind HB, Azaroual MF, et al. In vivo enamel stripping: a macroscopic and microscopic analytical study[J]. Int Orthod, 2019, 17(2): 235-242.
23 Meredith L, Farella M, Lowrey S, et al. Atomic force microscopy analysis of enamel nanotopography after interproximal reduction[J]. Am J Orthod Dentofacial Orthop, 2017, 151(4): 750-757.
24 Hellak AF, Riepe EM, Seubert A, et al. Enamel demineralization after different methods of interproximal polishing[J]. Clin Oral Investig, 2015, 19(8): 1965-1972.
25 Vicente A, Ortiz Ruiz AJ, González Paz BM, et al. Efficacy of fluoride varnishes for preventing enamel demineralization after interproximal enamel reduction. Qualitative and quantitative evaluation[J]. PLoS One, 2017, 12(4): e0176389.
26 Zanatta RF, Caneppele TMF, Scaramucci T, et al. Protective effect of fluorides on erosion and erosion/abrasion in enamel: a systematic review and meta-analysis of randomized in situ trials[J]. Arch Oral Biol, 2020, 120: 104945.
27 Pini NIP, Lima DANL, Luka B, et al. Viscosity of chitosan impacts the efficacy of F/Sn containing toothpastes against erosive/abrasive wear in enamel[J]. J Dent, 2020, 92: 103247.
28 Körner P, Schleich JA, Wiedemeier DB, et al. Effects of additional use of bioactive glasses or a hydroxyapatite toothpaste on remineralization of artificial lesions in vitro [J]. Caries Res, 2020, 54(4): 336-342.
29 Leal IC, Costa WKF, Passos VF. Fluoride dentifrice containing calcium silicate and sodium phosphate salts on dental erosion: in vitro study[J]. Arch Oral Biol, 2020, 118: 104857.
30 Perdigão J. Resin infiltration of enamel white spot lesions: an ultramorphological analysis[J]. J Esthet Restor Dent, 2020, 32(3): 317-324.
31 Yin P, Zheng Q, Zhou T, et al. The effect of resin infiltration vs. fluoride varnish in enhancing enamel surface conditions after interproximal reduction[J]. Dent Mater J, 2016, 35(5): 756-761.
32 Yazkan B, Ermis RB. Effect of resin infiltration and microabrasion on the microhardness, surface roughness and morphology of incipient carious lesions[J]. Acta Odontol Scand, 2018, 76(7): 473-481.
33 Chen M, Li JZ, Zuo QL, et al. Accelerated aging effects on color, microhardness and microstructure of ICON resin infiltration[J]. Eur Rev Med Pharmacol Sci, 2019, 23(18): 7722-7731.
34 Cross KJ, Huq NL, Stanton DP, et al. NMR studies of a novel calcium, phosphate and fluoride delivery vehicle-alpha(S1)-casein(59-79) by stabilized amorphous calcium fluoride phosphate nanocomplexes[J]. Biomaterials, 2004, 25(20): 5061-5069.
35 Yu H, Jiang NW, Ye XY, et al. In situ effect of tooth mousse containing CPP-ACP on human enamel subjected to in vivo acid attacks[J]. J Dent, 2018, 76: 40-45.
36 Reise M, Kranz S, Heyder M, et al. Effectiveness of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) compared to fluoride products in an in-vitro demineralization model[J]. Materials, 2021, 14(20): 5974.
37 Sionov RV, Tsavdaridou D, Aqawi M, et al. Tooth mousse containing casein phosphopeptide-amor-phous calcium phosphate prevents biofilm formation of Streptococcus mutans [J]. BMC Oral Health, 2021, 21(1): 136.
38 Alencar CRB, Oliveira GC, Magalhães AC, et al. In situ effect of CPP-ACP chewing gum upon erosive enamel loss[J]. J Appl Oral Sci, 2017, 25(3): 258-264.
39 Jordão MC, Ionta FQ, Bergantin BT, et al. The effect of mucin in artificial saliva on erosive reharde-ning and demineralization[J]. Caries Res, 2017, 51(2): 136-140.
40 Vicente A, Ortiz-Ruiz AJ, González-Paz BM, et al. Effectiveness of a toothpaste and a serum contai-ning calcium silicate on protecting the enamel after interproximal reduction against demineralization[J]. Sci Rep, 2021, 11: 834.
41 Li L, Mao CY, Wang JM, et al. Bio-inspired enamel repair via Glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics[J]. Adv Mater, 2011, 23(40): 4695-4701.
42 Fang ZH, Guo MX, Zhou QL, et al. Enamel-like tissue regeneration by using biomimetic enamel matrix proteins[J]. Int J Biol Macromol, 2021, 183: 2131-2141.
43 Shao CY, Jin B, Mu Z, et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth[J]. Sci Adv, 2019, 5(8): eaaw9569.
[1] Wang Qiqiu,Zhi Qinghui.. Research progress on treatments of enamel white spot lesions [J]. Int J Stomatol, 2022, 49(6): 717-723.
[2] Siying Tao,Kunneng Liang,Jiyao Li. Research advances in biomimetic peptides promoting tooth remineralization [J]. Inter J Stomatol, 2019, 46(1): 37-42.
[3] Luo Weidan, Li Mingyun, Zhou Xuedong, Cheng Lei. Application of nano-hydroxyapatite in the clinical treatment of oral diseases [J]. Inter J Stomatol, 2018, 45(2): 192-198.
[4] Chen Hui, Cheng Lei.. Research progress on anti-caries dental adhesives [J]. Inter J Stomatol, 2017, 44(1): 92-97.
[5] Wang Yachong, Hu Deyu, Dong Ying, Tu Rui, Li Xue, Kong Heng. An epidemiologic survey of dental caries among school children in the rural area of Chengdu [J]. Inter J Stomatol, 2017, 44(1): 28-31.
[6] Zhu Yuting, Liu Jiangfeng, Li Xiaoxing, Huang Jiangyong, Li Yanli. Research on clinical application of inhibitory effects of Clinpro™ White Varnish tooth mineralization during orthodontic treatment with fixed appliance [J]. Inter J Stomatol, 2015, 42(3): 306-309.
[7] Wu Shiyu, Mai Sui. Glass ionomer function in dentin remineralization [J]. Inter J Stomatol, 2015, 42(1): 114-118.
[8] Xi Hong, Zhou Hui, Yan Xiujuan, Zhang Yuna, Hu Weiwei, Huang Yang. Current concepts of nanotechnology and its application in caries therapy [J]. Inter J Stomatol, 2014, 41(5): 563-566.
[9] Xu Pengcheng, Xu Xin, Zhou Xuedong. Calcium and phosphorus remineralization and its system [J]. Inter J Stomatol, 2014, 41(3): 347-350.
[10] Liu Xin1, Tan Lijun2, Li Tao1, Huang Shiyan1. Preliminary study on bovine enamel demineralization by different kinds of tea in vitro [J]. Inter J Stomatol, 2013, 40(6): 710-713.
[11] Huang Yajing, Li Yueheng, Huang Rui, Qian Yingzi, Duan Yanxia, Zhou Zhi. . An in vitro study of remineralization potential of several toothpastes on initial enamel lesions [J]. Inter J Stomatol, 2012, 39(6): 710-713.
[12] Xing Lin, Qu Boying, Huang Yang.. The non-destructive treatment of enamel caries [J]. Inter J Stomatol, 2012, 39(1): 63-65.
[13] Luo Jingjing,Tang Xuyan, Li Quanli.. Mechanism of casein phosphopeptide-amorphous calcium phosphate on tooth remineralization [J]. Inter J Stomatol, 2011, 38(6): 662-664.
[14] SUN Xin- hua1, Wayne J Sampson2. Enamel Demineralization Prevention during Fixed Orthodontic Treatment and Reminer alization Strategies [J]. Inter J Stomatol, 2007, 34(03): 169-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .