Int J Stomatol ›› 2021, Vol. 48 ›› Issue (5): 592-599.doi: 10.7518/gjkq.2021069
• Reviews • Previous Articles Next Articles
Huang Peiqing(),Peng Xian,Xu Xin(
)
CLC Number:
[1] |
Kandalam U, Ledra N, Laubach H, et al. Inhibition of methionine Gamma lyase deaminase and the grow-th of Porphyromonas gingivalis: a therapeutic target for halitosis/periodontitis[J]. Arch Oral Biol, 2018, 90:27-32.
doi: S0003-9969(18)30056-6 pmid: 29525436 |
[2] |
Kapoor U, Sharma G, Juneja M, et al. Halitosis: current concepts on etiology, diagnosis and management[J]. Eur J Dent, 2016, 10(2):292-300.
doi: 10.4103/1305-7456.178294 pmid: 27095913 |
[3] |
Nakhleh MK, Quatredeniers M, Haick H. Detection of halitosis in breath: between the past, present, and future[J]. Oral Dis, 2018, 24(5):685-695.
doi: 10.1111/odi.12699 pmid: 28622437 |
[4] |
Seerangaiyan K, Jüch F, Winkel EG. Tongue coa-ting: its characteristics and role in intra-oral halitosis and general health-a review[J]. J Breath Res, 2018, 12(3):034001.
doi: 10.1088/1752-7163/aaa3a1 |
[5] | Suzuki N, Yoneda M, Takeshita T, et al. Induction and inhibition of oral malodor[J]. Mol Oral Micro-biol, 2019, 34(3):85-96. |
[6] |
Seerangaiyan K, Maruthamuthu M, van Winkelhoff AJ, et al. Untargeted metabolomics of the bacterial tongue coating of intra-oral halitosis patients[J]. J Breath Res, 2019, 13(4):046010.
doi: 10.1088/1752-7163/ab334e |
[7] |
Oshiro A, Zaitsu T, Ueno M, et al. Characterization of oral bacteria in the tongue coating of patients with halitosis using 16S rRNA analysis[J]. Acta Odontol Scand, 2020, 78(7):541-546.
doi: 10.1080/00016357.2020.1754459 |
[8] |
Ye W, Zhang Y, He M, et al. Relationship of tongue coating microbiome on volatile sulfur compounds in healthy and halitosis adults[J]. J Breath Res, 2019, 14(1):016005.
doi: 10.1088/1752-7163/ab47b4 |
[9] |
Silveira JO, Costa FO, Oliveira PAD, et al. Effect of non-surgical periodontal treatment by full-mouth disinfection or scaling and root planing per quadrant in halitosis-a randomized controlled clinical trial[J]. Clin Oral Investig, 2017, 21(5):1545-1552.
doi: 10.1007/s00784-016-1959-0 |
[10] |
Scully C, Greenman J. Halitology (breath odour: aetiopathogenesis and management)[J]. Oral Dis, 2012, 18(4):333-345.
doi: 10.1111/j.1601-0825.2011.01890.x pmid: 22277019 |
[11] |
De Geest S, Laleman I, Teughels W, et al. Periodontal diseases as a source of halitosis: a review of the evidence and treatment approaches for dentists and dental hygienists[J]. Periodontol 2000, 2016, 71(1):213-227.
doi: 10.1111/prd.2016.71.issue-1 |
[12] |
Makino Y, Yamaga T, Yoshihara A, et al. Association between volatile sulfur compounds and perio-dontal disease progression in elderly non-smokers[J]. J Periodontol, 2012, 83(5):635-643.
doi: 10.1902/jop.2011.110275 pmid: 21861638 |
[13] |
Chen X, Zhang Y, Lu HX, et al. Factors associated with halitosis in white-collar employees in Shanghai, China[J]. PLoS One, 2016, 11(5):e0155592.
doi: 10.1371/journal.pone.0155592 |
[14] |
De Geest S, Laleman I, Teughels W, et al. Periodontal diseases as a source of halitosis: a review of the evidence and treatment approaches for dentists and dental hygienists[J]. Periodontol 2000, 2016, 71(1):213-227.
doi: 10.1111/prd.2016.71.issue-1 |
[15] |
Boyanova L. Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria[J]. Anaerobe, 2017, 44:13-19.
doi: 10.1016/j.anaerobe.2017.01.003 |
[16] |
Çoban Z, Sönmez I. Halitosis: a review of current literature[J]. Meandros, 2017, 18(3):164-170.
doi: 10.4274/meandros |
[17] |
Washio J, Sato T, Koseki T, et al. Hydrogen sulfide-producing bacteria in tongue biofilm and their relationship with oral malodour[J]. J Med Microbiol, 2005, 54(Pt 9):889-895.
doi: 10.1099/jmm.0.46118-0 |
[18] |
Yoo JI, Shin IS, Jeon JG, et al. The effect of probio-tics on halitosis: a systematic review and Meta-analysis[J]. Probiotics Antimicrob Proteins, 2019, 11(1):150-157.
doi: 10.1007/s12602-017-9351-1 |
[19] |
Mogilnicka I, Bogucki P, Ufnal M. Microbiota and malodor: etiology and management[J]. Int J Mol Sci, 2020, 21(8):2886.
doi: 10.3390/ijms21082886 |
[20] |
De Lima PO, Nani BD, Rolim GS, et al. Effects of academic stress on the levels of oral volatile sulfur compounds, halitosis-related bacteria and stress biomarkers of healthy female undergraduate students[J]. J Breath Res, 2020, 14(3):036005.
doi: 10.1088/1752-7163/ab944d |
[21] |
Yoshimura M, Nakano Y, Yamashita Y, et al. Formation of methyl mercaptan from L-methionine by Porphyromonas gingivalis[J]. Infect Immun, 2000, 68(12):6912-6916.
doi: 10.1128/IAI.68.12.6912-6916.2000 pmid: 11083813 |
[22] | Kleinberg I, Westbay G. Salivary and metabolic factors involved in oral malodor formation[J]. J Perio-dontol, 1992, 63(9):768-775. |
[23] |
Sterer N, Rosenberg M. Streptococcus salivarius promotes mucin putrefaction and malodor production by Porphyromonas gingivalis[J]. J Dent Res, 2006, 85(10):910-914.
pmid: 16998130 |
[24] |
Masuo Y, Suzuki N, Yoneda M, et al. Salivary β-galactosidase activity affects physiological oral malodour[J]. Arch Oral Biol, 2012, 57(1):87-93.
doi: 10.1016/j.archoralbio.2011.07.015 |
[25] |
Tanabe S, Grenier D. Characterization of volatile sulfur compound production by Solobacterium moo-rei[J]. Arch Oral Biol, 2012, 57(12):1639-1643.
doi: 10.1016/j.archoralbio.2012.09.011 |
[26] |
Nani BD, Lima PO, Marcondes FK, et al. Changes in salivary microbiota increase volatile sulfur compounds production in healthy male subjects with a-cademic-related chronic stress[J]. PLoS One, 2017, 12(3):e0173686.
doi: 10.1371/journal.pone.0173686 |
[27] |
Wu J, Cannon RD, Ji P, et al. Halitosis: prevalence, risk factors, sources, measurement and treatment-a review of the literature[J]. Aust Dent J, 2020, 65(1):4-11.
doi: 10.1111/adj.12725 pmid: 31610030 |
[28] |
Bowen WH, Burne RA, Wu H, et al. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments[J]. Trends Microbiol, 2018, 26(3):229-242.
doi: 10.1016/j.tim.2017.09.008 |
[29] |
Deutscher H, Derman S, Barbe AG, et al. The effect of professional tooth cleaning or non-surgical perio-dontal therapy on oral halitosis in patients with perio-dontal diseases. A systematic review[J]. Int J Dent Hyg, 2018, 16(1):36-47.
doi: 10.1111/idh.12306 pmid: 28836329 |
[30] |
Iatropoulos A, Panis V, Mela E, et al. Changes of volatile sulphur compounds during therapy of a case series of patients with chronic periodontitis and halitosis[J]. J Clin Periodontol, 2016, 43(4):359-365.
doi: 10.1111/jcpe.12521 pmid: 26824613 |
[31] |
Liu SS, Fu E, Tu HP, et al. Comparison of oral malo-dors before and after nonsurgical periodontal therapy in chronic periodontitis patients[J]. J Dent Sci, 2017, 12(2):156-160.
doi: 10.1016/j.jds.2016.12.004 |
[32] |
Acar B, Berker E, Tan Ç, et al. Effects of oral prophylaxis including tongue cleaning on halitosis and gingival inflammation in gingivitis patients-a randomized controlled clinical trial[J]. Clin Oral Investig, 2019, 23(4):1829-1836.
doi: 10.1007/s00784-018-2617-5 |
[33] |
Aung EE, Ueno M, Zaitsu T, et al. Effectiveness of three oral hygiene regimens on oral malodor reduction: a randomized clinical trial[J]. Trials, 2015, 16:31.
doi: 10.1186/s13063-015-0549-9 pmid: 25622725 |
[34] |
Christensen GJ. Why clean your tongue[J]. J Am Dent Assoc, 1998, 129(11):1605-1607.
pmid: 9818580 |
[35] |
Rowley EJ, Schuchman LC, Tishk MN, et al. Tongue brushing versus tongue scraping[J]. Clin Prev Dent, 1987, 9(6):13-16.
pmid: 3505832 |
[36] |
Yaegaki K, Coil JM, Kamemizu T, et al. Tongue brushing and mouth rinsing as basic treatment measures for halitosis[J]. Int Dent J, 2002, 52(Suppl 3):192-196.
doi: 10.1002/j.1875-595X.2002.tb00923.x |
[37] |
Matsumura Y, Hinode D, Fukui M, et al. Effectiveness of an oral care tablet containing kiwifruit powder in reducing oral bacteria in tongue coating: a crossover trial[J]. Clin Exp Dent Res, 2020, 6(2):197-206.
doi: 10.1002/cre2.262 pmid: 32250572 |
[38] |
Mugita N, Nambu T, Takahashi K, et al. Proteases, actinidin, papain and trypsin reduce oral biofilm on the tongue in elderly subjects and in vitro[J]. Arch Oral Biol, 2017, 82:233-240.
doi: S0003-9969(17)30145-0 pmid: 28662376 |
[39] |
Kato K, Tamura K, Shimazaki Y. Oral biofilm uptake of mineral ions released from experimental too-thpaste containing surface pre-reacted glass-ionomer (S-PRG) filler[J]. Arch Oral Biol, 2020, 117:104777.
doi: 10.1016/j.archoralbio.2020.104777 |
[40] |
Saku S, Kotake H, Scougall-Vilchis RJ, et al. Antibacterial activity of composite resin with glass-ionomer filler particles[J]. Dent Mater J, 2010, 29(2):193-198.
doi: 10.4012/dmj.2009-050 |
[41] |
Suzuki N, Yoneda M, Haruna K, et al. Effects of S-PRG eluate on oral biofilm and oral malodor[J]. Arch Oral Biol, 2014, 59(4):407-413.
doi: 10.1016/j.archoralbio.2014.01.009 pmid: 24530472 |
[42] |
Kang JH, Kim DJ, Choi BK, et al. Inhibition of ma-lodorous gas formation by oral bacteria with cetylpyridinium and zinc chloride[J]. Arch Oral Biol, 2017, 84:133-138.
doi: 10.1016/j.archoralbio.2017.09.023 |
[43] |
Jervøe-Storm PM, Schulze H, Jepsen S. A randomized cross-over short-term study on the short-term effects of a zinc-lactate containing mouthwash against oral malodour[J]. J Breath Res, 2019, 13(2):026005.
doi: 10.1088/1752-7163/aaf401 |
[44] | Yadav SR, Kini VV, Padhye A. Inhibition of tongue coat and dental plaque formation by stabilized chlorine dioxide vs chlorhexidine mouthrinse: a rando-mized, triple blinded study[J]. J Clin Diagn Res, 2015, 9(9): ZC69-ZC74. |
[45] |
Sreenivasan PK, Gittins E. Effects of low dose chlor-hexidine mouthrinses on oral bacteria and salivary microflora including those producing hydrogen sulfide[J]. Oral Microbiol Immunol, 2004, 19(5):309-313.
doi: 10.1111/omi.2004.19.issue-5 |
[46] |
Erovic Ademovski S, Lingström P, Renvert S. The effect of different mouth rinse products on intra-oral halitosis[J]. Int J Dent Hyg, 2016, 14(2):117-123.
doi: 10.1111/idh.12148 pmid: 26031397 |
[47] | Jamali Z, Aminabadi NA, Samiei M, et al. Impact of chlorhexidine pretreatment followed by probiotic Streptococcus salivarius strain K12 on halitosis in children: a randomised controlled clinical trial[J]. Oral Health Prev Dent, 2016, 14(4):305-313. |
[48] |
Lang NP, Catalanotto FA, Knöpfli RU, et al. Quality-specific taste impairment following the application of chlorhexidine digluconate mouthrinses[J]. J Clin Periodontol, 1988, 15(1):43-48.
pmid: 3422243 |
[49] |
Supranoto SC, Slot DE, Addy M, et al. The effect of chlorhexidine dentifrice or gel versus chlorhexidine mouthwash on plaque, gingivitis, bleeding and tooth discoloration: a systematic review[J]. Int J Dent Hyg, 2015, 13(2):83-92.
doi: 10.1111/idh.12078 pmid: 25059640 |
[50] |
Georgiou AC, Laine ML, Deng DM, et al. Efficacy of probiotics: clinical and microbial parameters of halitosis[J]. J Breath Res, 2018, 12(4):046010.
doi: 10.1088/1752-7163/aacf49 |
[51] |
Lee SH, Baek DH. Effects of Streptococcus thermophilus on volatile sulfur compounds produced by Porphyromonas gingivalis[J]. Arch Oral Biol, 2014, 59(11):1205-1210.
doi: 10.1016/j.archoralbio.2014.07.006 |
[52] |
Moon JE, Moon YM, Cho JW. The effect of Streptococcus salivarius K12 against Prevotella intermedia on the reduction of oral malodor[J]. Int J Clin Prev Dent, 2016, 12(3):153-161.
doi: 10.15236/ijcpd.2016.12.3.153 |
[53] |
Benic GZ, Farella M, Morgan XC, et al. Oral probio-tics reduce halitosis in patients wearing orthodontic braces: a randomized, triple-blind, placebo-controlled trial[J]. J Breath Res, 2019, 13(3):036010.
doi: 10.1088/1752-7163/ab1c81 |
[54] |
Pitts G, Pianotti R, Feary TW, et al. The in vivo effects of an antiseptic mouthwash on odor-producing microorganisms[J]. J Dent Res, 1981, 60(11):1891-1896.
pmid: 6945328 |
[55] |
Tanabe S, Desjardins J, Bergeron C, et al. Reduction of bacterial volatile sulfur compound production by licoricidin and licorisoflavan A from licorice[J]. J Breath Res, 2012, 6(1):016006.
doi: 10.1088/1752-7155/6/1/016006 |
[56] |
Satthanakul P, Taweechaisupapong S, Paphangkora-kit J, et al. Antimicrobial effect of lemongrass oil against oral malodour micro-organisms and the pilot study of safety and efficacy of lemongrass mouthrinse on oral malodour[J]. J Appl Microbiol, 2015, 118(1):11-17.
doi: 10.1111/jam.12667 pmid: 25327222 |
[57] |
Veloso DJ, Abrão F, Martins CHG, et al. Potential antibacterial and anti-halitosis activity of medicinal plants against oral bacteria[J]. Arch Oral Biol, 2020, 110:104585.
doi: 10.1016/j.archoralbio.2019.104585 |
[58] | Watanabe K, Hiramine H, Toyama T, et al. Effects of French pine bark extract chewing gum on oral malodor and salivary bacteria[J]. J Nutr Sci Vitami-nol (Tokyo), 2018, 64(3):185-191. |
[59] |
Shin K, Yaegaki K, Murata T, et al. Effects of a composition containing lactoferrin and lactoperoxidase on oral malodor and salivary bacteria: a randomized, double-blind, crossover, placebo-controlled clinical trial[J]. Clin Oral Investig, 2011, 15(4):485-493.
doi: 10.1007/s00784-010-0422-x |
[60] |
Nakano M, Shin K, Wakabayashi H, et al. Inactiva-ting effects of the lactoperoxidase system on bacte-rial lyases involved in oral malodour production[J]. J Med Microbiol, 2015, 64(10):1244-1252.
doi: 10.1099/jmm.0.000150 |
[61] | Nakano M, Shimizu E, Wakabayashi H, et al. A randomized, double-blind, crossover, placebo-controlled clinical trial to assess effects of the single ingestion of a tablet containing lactoferrin, lactoperoxidase, and glucose oxidase on oral malodor[J]. BMC Oral Heal-th, 2016, 16:37. |
[62] |
Sreenivasan PK, Haraszthy VI, Zambon JJ. Antimicrobial efficacy of 0.05% cetylpyridinium chloride mouthrinses[J]. Lett Appl Microbiol, 2013, 56(1):14-20.
doi: 10.1111/lam.12008 pmid: 23039819 |
[63] |
Rioboo M, García V, Serrano J, et al. Clinical and microbiological efficacy of an antimicrobial mouth rinse containing 0.05% cetylpyridinium chloride in patients with gingivitis[J]. Int J Dent Hyg, 2012, 10(2):98-106.
doi: 10.1111/j.1601-5037.2011.00523.x pmid: 21831254 |
[64] |
Liu J, Ling JQ, Wu CD. Cetylpyridinium chloride suppresses gene expression associated with halitosis[J]. Arch Oral Biol, 2013, 58(11):1686-1691.
doi: 10.1016/j.archoralbio.2013.08.014 pmid: 24112735 |
[65] |
Feres M, Figueiredo LC, Faveri M, et al. The efficacy of two oral hygiene regimens in reducing oral malodour: a randomised clinical trial[J]. Int Dent J, 2015, 65(6):292-302.
doi: 10.1111/idj.12183 |
[66] | Hanley AB, Parsley KR, Lewis JA, et al. Chemistry of indole glucosinolates: intermediacy of indol-3-ylmethyl isothiocyanates in the enzymic hydrolysis of indole glucosinolates[J]. J Chem Soc Perkin Trans, 1990(8):2273. |
[67] | McDanell R, McLean AE, Hanley AB, et al. Chemical and biological properties of indole glucosinolates (glucobrassicins): a review[J]. Food Chem To-xicol, 1988, 26(1):59-70. |
[68] |
McDanell R, McLean AE, Hanley AB, et al. The effect of feeding Brassica vegetables and intact glucosinolates on mixed-function-oxidase activity in the livers and intestines of rats[J]. Food Chem Toxicol, 1989, 27(5):289-293.
pmid: 2473016 |
[69] |
Walter W, Bode KD. Syntheses of thiocarbamates[J]. Angew Chem Int Ed Engl, 1967, 6(4):281-293.
doi: 10.1002/(ISSN)1521-3773 |
[70] |
Tian MM, Hanley AB, Dodds MW. Allyl isothiocyanate from mustard seed is effective in reducing the levels of volatile sulfur compounds responsible for intrinsic oral malodor[J]. J Breath Res, 2013, 7(2):026001.
doi: 10.1088/1752-7155/7/2/026001 |
[71] |
Kim JS, Park JW, Kim DJ, et al. Direct effect of chlorine dioxide, zinc chloride and chlorhexidine solution on the gaseous volatile sulfur compounds[J]. Acta Odontol Scand, 2014, 72(8):645-650.
doi: 10.3109/00016357.2014.887770 |
[72] |
Pham TAV, Nguyen NTX. Efficacy of chlorine dio-xide mouthwash in reducing oral malodor: a 2-week randomized, double-blind, crossover study[J]. Clin Exp Dent Res, 2018, 4(5):206-215.
doi: 10.1002/cre2.v4.5 |
[73] |
Friedrich CG, Rother D, Bardischewsky F, et al. O-xidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism[J]. Appl Environ Microbiol, 2001, 67(7):2873-2882.
doi: 10.1128/AEM.67.7.2873-2882.2001 |
[74] |
Ramadhani A, Kawada-Matsuo M, Komatsuzawa H, et al. Recombinant sox enzymes from Paracoccus pantotrophus degrade hydrogen sulfide, a major component of oral malodor[J]. Microbes Environ, 2017, 32(1):54-60.
doi: 10.1264/jsme2.ME16140 pmid: 28260736 |
[1] | CHEN Jie, YU Dan-ni. Development of study on gene mutation related to dental plaque biofilm of Streptococcus mutans [J]. Inter J Stomatol, 2007, 34(04): 256-258. |