Int J Stomatol ›› 2022, Vol. 49 ›› Issue (2): 132-137.doi: 10.7518/gjkq.2022017
• Original Articles • Previous Articles Next Articles
Yang Jiazhen1,2(),Zhang Ying3,Liu Yuhan1,Li Fan4,Zeng Fei1,2,Li Xiuzhen1,Ma Yuying1,2,Yang Fang1()
CLC Number:
[1] |
Mark Welch JL, Ramírez-Puebla ST, Borisy GG. Oral microbiome geography: micron-scale habitat and niche[J]. Cell Host Microbe, 2020, 28(2): 160-168.
doi: 10.1016/j.chom.2020.07.009 |
[2] |
Rautemaa R, Nordberg A, Wuolijoki-Saaristo K, et al. Bacterial aerosols in dental practice-a potential hospital infection problem[J]. J Hosp Infect, 2006, 64(1): 76-81.
pmid: 16820249 |
[3] |
Vidana R, Sillerström E, Ahlquist M, et al. Potential for nosocomial transmission of Enterococcus faecalis from surfaces in dental operatories[J]. Int Endod J, 2015, 48(6): 518-527.
doi: 10.1111/iej.12342 pmid: 25066305 |
[4] |
Ricci ML, Fontana S, Pinci F, et al. Pneumonia associated with a dental unit waterline[J]. Lancet, 2012, 379(9816): 684.
doi: 10.1016/S0140-6736(12)60074-9 |
[5] |
Boyce JM. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals[J]. Antimicrob Resist Infect Control, 2016, 5: 10.
doi: 10.1186/s13756-016-0111-x |
[6] |
Stewart EJ. Growing unculturable bacteria[J]. J Bacteriol, 2012, 194(16): 4151-4160.
doi: 10.1128/JB.00345-12 pmid: 22661685 |
[7] |
Merikanto I, Laakso JT, Kaitala V. Invasion ability and disease dynamics of environmentally growing opportunistic pathogens under outside-host competition[J]. PLoS One, 2014, 9(11): e113436.
doi: 10.1371/journal.pone.0113436 |
[8] |
Zhang Y, Ping YF, Zhou RY, et al. High throughput sequencing-based analysis of microbial diversity in dental unit waterlines supports the importance of providing safe water for clinical use[J]. J Infect Public Health, 2018, 11(3): 357-363.
doi: 10.1016/j.jiph.2017.09.017 |
[9] |
Costa D, Mercier A, Gravouil K, et al. Pyrosequencing analysis of bacterial diversity in dental unit waterlines[J]. Water Res, 2015, 81: 223-231.
doi: 10.1016/j.watres.2015.05.065 |
[10] |
Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4: e2584.
doi: 10.7717/peerj.2584 |
[11] |
Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7(5): 335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131 |
[12] |
Shobo CO, Alisoltani A, Abia ALK, et al. Bacterial diversity and functional profile of microbial populations on surfaces in public hospital environments in South Africa: a high throughput metagenomic analysis[J]. Sci Total Environ, 2020, 719: 137360.
doi: 10.1016/j.scitotenv.2020.137360 |
[13] |
Chopyk J, Akrami K, Bavly T, et al. Temporal variations in bacterial community diversity and composition throughout intensive care unit renovations[J]. Microbiome, 2020, 8(1): 86.
doi: 10.1186/s40168-020-00852-7 |
[14] | Rampelotto PH, Sereia AFR, de Oliveira LFV, et al. Exploring the hospital microbiome by high-resolution 16S rRNA profiling[J]. Int J Mol Sci, 2019, 20(12): E3099. |
[15] |
Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome[J]. Arch Microbiol, 2018, 200(4): 525-540.
doi: 10.1007/s00203-018-1505-3 |
[16] |
Yu XL, Chan Y, Zhuang LF, et al. Intra-oral single-site comparisons of periodontal and peri-implant microbiota in health and disease[J]. Clin Oral Implants Res, 2019, 30(8): 760-776.
doi: 10.1111/clr.v30.8 |
[17] |
Liu G, Wu C, Abrams WR, et al. Structural and functional characteristics of the microbiome in deep-dentin caries[J]. J Dent Res, 2020, 99(6): 713-720.
doi: 10.1177/0022034520913248 pmid: 32196394 |
[18] |
Wang XW, Zhao ZB, Tang N, et al. Microbial community analysis of saliva and biopsies in patients with oral lichen planus[J]. Front Microbiol, 2020, 11: 629.
doi: 10.3389/fmicb.2020.00629 |
[19] |
Xu J, Chen N, Wu Z, et al. 5-aminosalicylic acid alters the gut bacterial microbiota in patients with ulcerative colitis[J]. Front Microbiol, 2018, 9: 1274.
doi: 10.3389/fmicb.2018.01274 |
[20] |
Fujitani S, Sun HY, Yu VL, et al. Pneumonia due to Pseudomonas aeruginosa: part Ⅰ: epidemiology, clinical diagnosis, and source[J]. Chest, 2011, 139(4): 909-919.
doi: S0012-3692(11)60194-3 pmid: 21467058 |
[21] |
Mittal R, Aggarwal S, Sharma S, et al. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview[J]. J Infect Public Health, 2009, 2(3): 101-111.
doi: 10.1016/j.jiph.2009.08.003 |
[22] |
Wu DC, Chan WW, Metelitsa AI, et al. Pseudomonas skin infection: clinical features, epidemiology, and management[J]. Am J Clin Dermatol, 2011, 12(3): 157-169.
doi: 10.2165/11539770-000000000-00000 |
[23] |
Willcox MD. Pseudomonas aeruginosa infection and inflammation during contact lens wear: a review[J]. Optom Vis Sci, 2007, 84(4): 273-278.
pmid: 17435510 |
[24] |
Ribeiro LF, Lopes EM, Kishi LT, et al. Microbial community profiling in intensive care units expose limitations in current sanitary standards[J]. Front Public Health, 2019, 7: 240.
doi: 10.3389/fpubh.2019.00240 |
[1] | Qing Wei,Huang Lijuan,Zheng Jiajun,Ren Jing,Li Chenglong,Tuo Qiang,Ren Xiaohua,Mu Yandong. Shift of microbial composition of peri-implant gingival crevicular fluid as revealed by 16S ribosomal DNA high-throughput sequencing [J]. Int J Stomatol, 2019, 46(5): 532-539. |
[2] | Zhao Hong, Wang Xinlin, Lü Zhi, Wang Dongqing, Su Jianrong. Microbiological community analysis by high-throughput sequencing of subgingival plaque in patients with chronic periodontitis before and after subgingival scaling and root planing [J]. Inter J Stomatol, 2017, 44(3): 294-300. |