Int J Stomatol ›› 2022, Vol. 49 ›› Issue (1): 12-18.doi: 10.7518/gjkq.2022015

• Orginal Article • Previous Articles     Next Articles

Research progress on the biomedical applications of photosensitive hydrogels

Liang Yi(),Pei Xibo,Wan Qianbing()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-04-12 Revised:2021-09-13 Online:2022-01-01 Published:2022-01-07
  • Contact: Qianbing Wan E-mail:821868670@qq.com;champion@scu.edu.cn
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81970984)

Abstract:

Photosensitive hydrogels are water swollen three-dimensional polymers, which are responsive to light. Photosensitive hydrogels have properties similar to natural extracellular matrix. They can be operated remotely without contact and spatiotemporally controlled with high precision by light stimulation. Accordingly, they are widely studied and applied in the fields of biological scaffold, drug delivery, three-dimensional cell culture and stomatology. This study reviews the applications of photosensitive hydrogels in biomedical fields based on domestic and foreign literature. Their potential for development and potential future challenges are also outlined.

Key words: photosensitive hydrogel, biological scaffold, drug delivery, cell encapsulation


TrendMD: 
[1] Huang QT, Zou YJ, Arno MC, et al. Hydrogel scaffolds for differentiation of adipose-derived stem cells[J]. Chem Soc Rev, 2017,46(20):6255-6275.
[2] 韩超越, 候冰娜, 郑泽邻, 等. 功能高分子材料的研究进展[J]. 材料工程, 2021,49(6):1-12.
Han CY, Hou BN, Zheng ZL, et al. Research pro-gress in functional polymer materials[J]. J Mater Eng, 2021,49(6):1-12.
[3] Li L, Scheiger JM, Levkin PA. Design and applications of photoresponsive hydrogels[J]. Adv Mater, 2019,31:e1807333.
[4] Ji WH, Wu Q, Han XS, et al. Photosensitive hydrogels: from structure, mechanisms, design to bioapplications[J]. Sci China Life Sci, 2020,63(12):1813-1828.
[5] Xin SJ, Chimene D, Garza JE, et al. Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting[J]. Biomater Sci, 2019,7(3):1179-1187.
[6] Doi T, Kashida H, Asanuma H. Efficiency of [2+2] photodimerization of various stilbene derivatives wi-thin the DNA duplex scaffold[J]. Org Biomol Chem, 2015,13(15):4430-4437.
[7] Lunzer M, Shi LY, Andriotis OG, et al. A modular approach to sensitized two-photon patterning of photodegradable hydrogels[J]. Angew Chem Int Ed En-gl, 2018,57(46):15122-15127.
[8] Fleming CL, Li SM, Grøtli M, et al. Shining new light on the spiropyran photoswitch: a photocage de-cides between Cis- trans or spiro-merocyanine isome-rization[J]. J Am Chem Soc, 2018,140(43):14069-14072.
[9] Homma K, Chang AC, Yamamoto S, et al. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling[J]. Acta Biomater, 2021,132:103-113.
[10] Li C, Iscen A, Palmer LC, et al. Light-driven expansion of spiropyran hydrogels[J]. J Am Chem Soc, 2020,142(18):8447-8453.
[11] Xie MJ, Yu K, Sun Y, et al. Protocols of 3D bioprin-ting of gelatin methacryloyl hydrogel based bioinks[J]. J Vis Exp, 2019, ( 154). doi: 10.3791/60545.
[12] 颜燕宏, 祁胜财, 彭前, 等. 介孔二氧化硅载甲硝唑复合水凝胶体外抗菌性及牙髓细胞黏附研究[J]. 临床口腔医学杂志, 2021,37(4):200-204.
Yan YH, Qi SC, Peng Q, et al. Antibacterial and pulp cell adhesion of mesoporous silica-loaded me-tronidazole composite hydrogel in vitro[J]. J Clin S-tomatol, 2021,37(4):200-204.
[13] Cidonio G, Alcala-Orozco CR, Lim KS, et al. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite laponite-gelatin bioinks[J]. Biofabrication, 2019,11(3):035027.
[14] Zhu SA, Chen PF, Chen Y, et al. 3D-printed extracellular matrix/polyethylene glycol diacrylate hydrogel incorporating the anti-inflammatory phytomolecule honokiol for regeneration of osteochondral defects[J]. Am J Sports Med, 2020,48(11):2808-2818.
[15] Anil Kumar S, Alonzo M, Allen SC, et al. A visible light-cross-linkable, fibrin-gelatin-based bioprinted construct with human cardiomyocytes and fibrobla-sts[J]. ACS Biomater Sci Eng, 2019,5(9):4551-4563.
[16] Xu CC, Lee W, Dai GH, et al. Highly elastic biodegradable single-network hydrogel for cell printing[J]. ACS Appl Mater Interfaces, 2018,10(12):9969-9979.
[17] Cai ZW, Gan YB, Bao CY, et al. Photosensitive hydrogel creates favorable biologic niches to promote spinal cord injury repair[J]. Adv Healthc Mater, 2019,8(13):e1900013.
[18] Li Y, San BH, Kessler JL, et al. Non-covalent photo-patterning of gelatin matrices using caged collagen mimetic peptides[J]. Macromol Biosci, 2015,15(1):52-62.
[19] Chyzy A, Tomczykowa M, Plonska-Brzezinska ME. Hydrogels as potential nano-, micro-and macro-scale systems for controlled drug delivery[J]. Materials (Basel), 2020,13(1):E188.
[20] 杨梅, 姚钧健, 彭雅仪, 等. 智能型高分子水凝胶在药物控释中的应用研究进展[J]. 当代化工研究, 2021(6):3-9.
Yang M, Yao JJ, Peng YY, et al. Research progress in the application of intelligent polymer hydrogels in drug controlled release[J]. Modern Chem Res, 2021 (6):3-9.
[21] Clasky AJ, Watchorn JD, Chen PZ, et al. From prevention to diagnosis and treatment: biomedical applications of metal nanoparticle-hydrogel composites[J]. Acta Biomater, 2021,122:1-25.
[22] Sun ZY, Song CJ, Wang C, et al. Hydrogel-based controlled drug delivery for cancer treatment: a review[J]. Mol Pharm, 2020,17(2):373-391.
[23] 冯茜, 张琨雨, 李睿, 等. 可注射水凝胶及其在再生医学领域的应用[J]. 高分子学报, 2021,52(1):1-15.
Feng Q, Zhang KY, Li R, et al. Injectable hydro-gels for regenerative medicine[J]. Acta Polymer Sin, 2021,52(1):1-15.
[24] 李星, 颜世峰, 简宇航, 等. 聚L-谷氨酸可注射水凝胶的制备及性能[J]. 高等学校化学学报, 2017,38(5):872-879.
Li X, Yan SF, Jian YH, et al. Synjournal and characterization of injectable poly(L-glutamic acid) hydrogels[J]. Chem J Chin Univ, 2017,38(5):872-879.
[25] Wang XY, Wang CP, Zhang Q, et al. Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery[J]. Chem Commun (Camb), 2016,52(5):978-981.
[26] Xu YJ, Shi Z, Shi XY, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synjournal and applications[J]. Nanoscale, 2019,11(31):14491-14527.
[27] Yin T, Long LY, Tang X, et al. Advancing applications of black phosphorus and BP-analog materials in photo/electrocatalysis through structure enginee-ring and surface modulation[J]. Adv Sci (Weinh), 2020,7(19):2001431.
[28] Qiu M, Wang D, Liang WY, et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy[J]. Proc Natl Acad Sci U S A, 2018,115(3):501-506.
[29] Zheng Z, Hu JJ, Wang H, et al. Dynamic softening or stiffening a supramolecular hydrogel by ultraviolet or near-infrared light[J]. ACS Appl Mater Interfaces, 2017,9(29):24511-24517.
[30] Hu J, Chen Y, Li Y, et al. A thermo-degradable hydrogel with light-tunable degradation and drug release[J]. Biomaterials, 2017,112:133-140.
[31] Wang SQ, Zheng H, Zhou L, et al. Injectable redox and light responsive MnO2 hybrid hydrogel for simultaneous melanoma therapy and multidrug-resistant bacteria-infected wound healing[J]. Biomate-rials, 2020,260:120314.
[32] Grim JC, Brown TE, Aguado BA, et al. A reversible and repeatable thiol-ene bioconjugation for dynamic patterning of signaling proteins in hydrogels[J]. ACS Cent Sci, 2018,4(7):909-916.
[33] Jiang BJ, Liu XT, Yang C, et al. Injectable, photoresponsive hydrogels for delivering neuroprotective proteins enabled by metal-directed protein assembly[J]. Sci Adv, 2020,6(41): eabc4824.
[34] Huang Y, Li XF, Lu ZT, et al. Nanofiber-reinforced bulk hydrogel: preparation and structural, mechanical, and biological properties[J]. J Mater Chem B, 2020,8(42):9794-9803.
[35] Wu RWK, Chu ESM, Yuen JWM, et al. Comparative study of FosPeg ® photodynamic effect on nasopharyngeal carcinoma cells in 2D and 3D models [J]. J Photochem Photobiol B, 2020,210:111987.
[36] 樊全宝, 罗惠娜, 王丙云, 等. 低氧培养犬脂肪间充质干细胞的生物学特性[J]. 中国组织工程研究, 2021,25(7):1002-1007.
Fan QB, Luo HN, Wang BY, et al. Biological cha-racteristics of canine adipose-derived mesenchymal stem cells cultured in hypoxia[J]. Chin J Tissue Eng Res, 2021,25(7):1002-1007.
[37] Cosgrove BD, Loebel C, Driscoll TP, et al. Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments[J]. Biomaterials, 2021,270:120662.
[38] Lee IN, Dobre O, Richards D, et al. Photoresponsive hydrogels with photoswitchable mechanical pro-perties allow time-resolved analysis of cellular responses to matrix stiffening[J]. ACS Appl Mater Interfaces, 2018,10(9):7765-7776.
[39] Crosby CO, Hillsley A, Kumar S, et al. Phototuna-ble interpenetrating polymer network hydrogels to stimulate the vasculogenesis of stem cell-derived endothelial progenitors[J]. Acta Biomater, 2021,122:133-144.
[40] Seeto WJ, Tian Y, Pradhan S, et al. Rapid production of cell-laden microspheres using a flexible microfluidic encapsulation platform[J]. Small, 2019,15(47):e1902058.
[41] He QL, Liao YG, Zhang JW, et al. “all-in-one” gel system for whole procedure of stem-cell amplification and tissue engineering[J]. Small, 2020,16(16):e1906539.
[42] Zheng ZQ, Wang HP, Li JN, et al. 3D construction of shape-controllable tissues through self-bonding of multicellular microcapsules[J]. ACS Appl Mater Interfaces, 2019,11(26):22950-22961.
[43] Ribeiro JS, Daghrery A, Dubey N, et al. Hybrid antimicrobial hydrogel as injectable therapeutics for o-ral infection ablation[J]. Biomacromolecules, 2020,21(9):3945-3956.
[44] Ma YF, Ji Y, Zhong T, et al. Bioprinting-based PDL-SC-ECM screening for in vivo repair of alveolar bone defect using cell-laden, injectable and photocrosslinkable hydrogels[J]. ACS Biomater Sci Eng, 2017,3(12):3534-3545.
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[3] Jiang Xiaoge,Wu Jiaxin,Pei Xibo. Research progress on metal-organic frameworks and their complex in biomedical field [J]. Int J Stomatol, 2019, 46(5): 552-557.
[4] Cheng Guoping,Ding Yi,Guo Shujuan. Progress in electrospun fibres as periodontal drug delivery systems [J]. Int J Stomatol, 2019, 46(5): 565-570.
[5] Zhang Yixin, Li Lei. Development of calcium phosphate scaffolds as drug delivery system in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 346-350.
[6] Wang Ting, Ge Shaohua.. Research progress on the application of graphene oxide in the field of biomedicine [J]. Inter J Stomatol, 2017, 44(5): 591-595.
[7] Guo Tianqi, Zhou Yanmin, Zhao Jinghui, Chu Shunli, Sun Qianyue, Luo Wenjing, Ma Shanshan. Platelet-rich fibrin and other biological materials used jointly for periodontal tissue repair [J]. Inter J Stomatol, 2015, 42(2): 231-236.
[8] Yang Junjun1,2, Cheng Zhigang2, Song Guangtai1.. Application of the dental drug delivery system in stomatology [J]. Inter J Stomatol, 2014, 41(2): 236-239.
[9] JI Qiu-xia, DENG Jing. Effect of chitosan and its derivates in the field of periodontal treatment [J]. Inter J Stomatol, 2010, 37(5): 566-568,572.
[10] WU Xuan1, MA Wei- dong2, LIU Hong- chen1. Implantable drug delivery system of insulin [J]. Inter J Stomatol, 2008, 35(4): 430-430~432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .