Int J Stomatol ›› 2019, Vol. 46 ›› Issue (5): 565-570.doi: 10.7518/gjkq.2019079

• Reviews • Previous Articles     Next Articles

Progress in electrospun fibres as periodontal drug delivery systems

Cheng Guoping,Ding Yi,Guo Shujuan()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-11-09 Revised:2019-05-21 Online:2019-09-01 Published:2019-09-10
  • Contact: Shujuan Guo E-mail:guo.shujuan@yahoo.com
  • Supported by:
    This study was supported by National Key Basic Research Development Plan (973 Plan)(2013CBA01705-1)

Abstract:

Electrospun synthesizes nanometer or micrometer fibers used by polymer solutions or melts under high-voltage electric fields. Electrospun fibers have the advantages of good biocompatibility, large specific surface area, high porosity, easy modification and low cost, they are widely used in regenerative medicine, tissue engineering, wound dressing, medical textile materials and drug delivery systems. Electrospun fibres also have good application prospects as periodontal drug delivery systems. Progress in electrospun fibres as periodontal drug delivery systems is summarized.

Key words: electrospun fibres, periodontal disease, drug delivery, bioactive molecule

CLC Number: 

  • R781.4 +2

TrendMD: 
[1] Larsson L, Decker AM, Nibali L , et al. Regenerative medicine for periodontal and peri-implant diseases[J]. J Dent Res, 2016,95(3):255-266.
[2] Greiner A, Wendorff JH . Electrospinning: a fascinating method for the preparation of ultrathin fibers[J]. Angew Chem Int Ed Engl, 2007,46(30):5670-5703.
[3] Bhardwaj N, Kundu SC . Electrospinning: a fascinating fiber fabrication technique[J]. Biotechnol Adv, 2010,28(3):325-347.
[4] Valizadeh A, Mussa Farkhani S . Electrospinning and electrospun nanofibers[J]. IET Nanobiotechnol, 2014,8(2):83-92.
[5] Raeisdasteh Hokmabad V, Davaran S, Ramazani A , et al. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering[J]. J Biomater Sci Polym Ed, 2017,28(16):1797-1825.
[6] Ngadiman NHA, Noordin MY, Idris A , et al. A review of evolution of electrospun tissue engineering scaffold: from two dimensions to three dimensions[J]. Proc Inst Mech Eng H, 2017,231(7):597-616.
[7] McClellan P, Landis WJ . Recent applications of coaxial and emulsion electrospinning methods in the field of tissue engineering[J]. Biores Open Access, 2016,5(1):212-227.
[8] Moradi SL, Golchin A, Hajishafieeha Z , et al. Bone tissue engineering: adult stem cells in combination with electrospun nanofibrous scaffolds[J]. J Cell Physiol, 2018,233(10):6509-6522.
[9] Wright ME, Parrag IC, Yang M , et al. Electrospun polyurethane nanofiber scaffolds with ciprofloxacin oligomer versus free ciprofloxacin: effect on drug release and cell attachment[J]. J Control Release, 2017,250:107-115.
[10] Cheng H, Yang X, Che X , et al. Biomedical application and controlled drug release of electrospun fibrous materials[J]. Mater Sci Eng C Mater Biol Appl, 2018,90:750-763.
[11] He P, Zhong Q, Ge Y , et al. Dual drug loaded coaxial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection[J]. Mater Sci Eng C Mater Biol Appl, 2018,90:549-556.
[12] Chou SF, Carson D, Woodrow KA . Current strategies for sustaining drug release from electrospun nanofibers[J]. J Control Release, 2015,220(Pt B):584-591.
[13] Ranjbar-Mohammadi M, Zamani M, Prabhakaran MP , et al. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2016,58:521-531.
[14] Khalf A, Madihally SV . Recent advances in multiaxial electrospinning for drug delivery[J]. Eur J Pharm Biopharm, 2017,112:1-17.
[15] Khalf A, Madihally SV . Modeling the permeability of multiaxial electrospun poly(ε-caprolactone)-gelatin hybrid fibers for controlled doxycycline release[J]. Mater Sci Eng C Mater Biol Appl, 2017,76:161-170.
[16] Bottino MC, Thomas V, Janowski GM . A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration[J]. Acta Biomater, 2011,7(1):216-224.
[17] Torres-Martinez EJ, Cornejo Bravo JM, Serrano Medina A , et al. A summary of electrospun nanofibers as drug delivery system: drugs loaded and biopolymers used as matrices[J]. Curr Drug Deliv, 2018,15(10):1360-1374.
[18] Hamed R , AbuRezeq A, Tarawneh O. Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis[J]. Drug Dev Ind Pharm, 2018,44(9):1488-1497.
[19] Chaturvedi TP, Srivastava R, Srivastava AK , et al. Doxycycline poly e-caprolactone nanofibers in patients with chronic periodontitis—a clinical evaluation[J]. J Clin Diagn Res, 2013,7(10):2339-2342.
[20] Song J, Klymov A, Shao J , et al. Electrospun nanofibrous silk fibroin membranes containing gelatin nanospheres for controlled delivery of biomolecules[J]. Adv Healthc Mater, 2017,6(14). doi: 10.1002/adhm.201700014.
[21] Schkarpetkin D, Reise M, Wyrwa R , et al. Development of novel electrospun dual-drug fiber mats loaded with a combination of ampicillin and metronidazole[J]. Dent Mater, 2016,32(8):951-960.
[22] Zhao P, Xue Y, Gao W , et al. Bacillaceae-derived peptide antibiotics since 2000[J]. Peptides, 2018,101:10-16.
[23] He Y, Jin Y, Wang X , et al. An antimicrobial peptide-loaded gelatin/chitosan nanofibrous membrane fabricated by sequential layer-by-layer electrospinning and electrospraying techniques[J]. Nanomaterials (Basel), 2018,8(5). doi: 10.3390/nano8050327.
[24] Yar M, Farooq A, Shahzadi L , et al. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications[J]. Mater Sci Eng C Mater Biol Appl, 2016,64:148-156.
[25] Bottino MC, Arthur RA, Waeiss RA , et al. Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria[J]. Clin Oral Investig, 2014,18(9):2151-2158.
[26] Monteiro N, Yelick PC . Advances and perspectives in tooth tissue engineering[J]. J Tissue Eng Regen Med, 2017,11(9):2443-2461.
[27] Chen X, Liu Y, Miao L , et al. Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration[J]. Int J Nanomedicine, 2016,11:3145-3158.
[28] Xie Q, Jia LN, Xu HY , et al. Fabrication of core-shell PEI/pBMP2-PLGA electrospun scaffold for gene delivery to periodontal ligament stem cells[J]. Stem Cells Int, 2016,2016:5385137.
[29] Monteiro N, Martins A, Pires R , et al. Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering[J]. Biomaterials Sci, 2014,2(9):1195-1209.
[30] El-Fiqi A, Kim JH, Kim HW . Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug[J]. ACS Appl Mater Interfaces, 2015,7(2):1140-1152.
[31] Jin G, He R, Sha B , et al. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2018,92:995-1005.
[32] Batool F, Strub M, Petit C , et al. Periodontal tissues, maxillary jaw bone, and tooth regeneration approaches: from animal models analyses to clinical applications[J]. Nanomaterials (Basel), 2018,8(5). doi: 10.3390/nano8050337.
[33] Costa PF, Vaquette C, Zhang Q , et al. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure[J]. J Clin Periodontol, 2014,41(3):283-294.
[34] Zafar M, Najeeb S, Khurshid Z , et al. Potential of electrospun nanofibers for biomedical and dental applications[J]. Materials (Basel), 2016,9(2). doi: 10.3390/ma9020073.
[35] de Jong T, Bakker AD, Everts V , et al. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration[J]. J Periodontal Res, 2017,52(6):965-974.
[36] Ren S, Yao Y, Zhang H , et al. Aligned fibers fabricated by near-field electrospinning influence the orien-tation and differentiation of hPDLSCs for perio-dontal regeneration[J]. J Biomed Nanotechnol, 2017,13(12):1725-1734.
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[3] Cheng Yifan,Qin Xu,Jiang Ming,Zhu Guang-xun.. Research progress on innate lymphoid cells in periodontal diseases [J]. Int J Stomatol, 2023, 50(1): 32-36.
[4] Li Weiguang,Wu Yafei,Guo Shujuan.. Research progress on the use of inorganic nanoparticles in the diagnosis and treatment of periodontal disease [J]. Int J Stomatol, 2022, 49(6): 724-730.
[5] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[6] Li Guiping,Qin Xu,Zhu Guangxun.. Research progress on adenosine monophosphate-activated protein kinase in periodontal disease [J]. Int J Stomatol, 2022, 49(3): 343-348.
[7] Liang Yi,Pei Xibo,Wan Qianbing. Research progress on the biomedical applications of photosensitive hydrogels [J]. Int J Stomatol, 2022, 49(1): 12-18.
[8] Mu Xinyue,Liu Shutai. Research progress on motivational interviewing in the management of patients with periodontal disease [J]. Int J Stomatol, 2022, 49(1): 94-99.
[9] Bai Haoliang,Yang He,Zhao Lei. Research progress on periodontal disease risk assessment and prognosis judgment tools [J]. Int J Stomatol, 2021, 48(6): 696-702.
[10] Zhou Wanhang,Li Yanfei,Xu Ricong,Wan Qijun. Effects of non-surgical periodontal treatment on risk factors of chronic kidney disease and systematic inflammatory levels in patients with chronic kidney disease and periodontal disease: a Meta-analysis [J]. Int J Stomatol, 2021, 48(5): 528-535.
[11] Shen Yifen,Liu Chao,Tang Ying,Gu Yongchun. Research progress on effects of electronic cigarette exposure on periodontal health [J]. Int J Stomatol, 2021, 48(3): 347-353.
[12] Qin Xiaoru,Liu Mengyuan. Association between periodontal disease and myocardial infarction: a Meta-analysis of cohort studies [J]. Int J Stomatol, 2021, 48(2): 165-172.
[13] Chen Liang,Ding Yi,Meng Shu. Research progress of host modulation therapy in the treatment of periodontal diseases [J]. Int J Stomatol, 2020, 47(6): 706-710.
[14] Jia Leming,Jia Xiaoyue,Yang Ran,Zhou Xuedong,Xu Xin. Progress on the application of probiotics in the management of periodontal diseases [J]. Int J Stomatol, 2020, 47(5): 515-521.
[15] Liu Lin,Zhou Jieyu,Wu Yafei,Zhao Lei. Application of probiotic ecological regulation in prevention and treatment of periodontal diseases [J]. Int J Stomatol, 2020, 47(2): 131-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .