Int J Stomatol ›› 2022, Vol. 49 ›› Issue (6): 724-730.doi: 10.7518/gjkq.2022102

• Reviews • Previous Articles     Next Articles

Research progress on the use of inorganic nanoparticles in the diagnosis and treatment of periodontal disease

Li Weiguang(),Wu Yafei,Guo Shujuan.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2022-01-07 Revised:2022-07-20 Online:2022-11-01 Published:2022-11-03
  • Contact: Shujuan. Guo;
  • Supported by:
    Key Research and Development Project of Sichuan Provincial Department of Science and Technology(2020YFS0175)


Inorganic nanoparticles generally refer to new nano multifunctional materials that are composed of non-carbon elements with structural units ranging from 1 nm to 100 nm in size. They have many advantages, such as good biocompatibility, high specific surface areas, stable chemical properties, excellent mechanical strength, and low cost. Inorga-nic nanoparticles have been widely studied in the fields of antibacterial applications, cell labeling, tissue regeneration, and targeted drug transport. Their application value in the diagnosis and treatment of periodontal diseases has also attracted increasing attention. The progress in the use of inorganic nanoparticles in the diagnosis and treatment of periodontal disease, including their application in diagnosis, antibacterial treatment, regulating the local immune microenvironment of perio-dontal tissues, carrying periodontal drugs, and promoting periodontal tissue regeneration, is summarized.

Key words: inorganic nanoparticles, periodontal disease, bioactive materials, diagnosis, treatment

CLC Number: 

  • R 781.4+2

1 Padovani GC, Feitosa VP, Sauro S, et al. Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects[J]. Trends Biotechnol, 2015, 33(11): 621-636.
2 Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities[J]. Arab J Chem, 2019, 12(7): 908-931.
3 Plan Sangnier A, van de Walle AB, Curcio A, et al. Impact of magnetic nanoparticle surface coating on their long-term intracellular biodegradation in stem cells[J]. Nanoscale, 2019, 11(35): 16488-16498.
4 闵洁, 何丽华, 郑荣, 等. 核/壳结构磁性Fe3O4 @SiO2纳米粒子的制备及表征[J]. 现代化工, 2021, 41(2): 146-150.
Min J, He LH, Zheng R, et al. Preparation and cha-racterizations of core-shell structural Fe3O4 @SiO2 magnetic nanoparticles[J]. Modern Chem Indust, 2021, 41(2): 146-150.
5 Zhang WJ, Yang GZ, Wang XS, et al. Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration[J]. Adv Mater, 2017, 29(43). doi: 10.1002/adma.201703795 .
doi: 10.1002/adma.201703795
6 张松, 刘源森, 唐旭, 等. 氧化石墨烯/迷迭香酸纳米复合材料的制备及其抗菌性能研究[J]. 化工新型材料, 2021, 49(4): 127-132.
Zhang S, Liu YS, Tang X, et al. Preparation and antibacterial property of GO-RA nanocomposite[J]. New Chem Mater, 2021, 49(4): 127-132.
7 Bayda S, Adeel M, Tuccinardi T, et al. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine[J]. Molecules, 2019, 25(1): E112.
8 Wiechers JW, Musee N. Engineered inorganic nano-particles and cosmetics: facts, issues, knowledge gaps and challenges[J]. J Biomed Nanotechnol, 2010, 6(5): 408-431.
9 Teng WY, Jeng SC, Kuo CW, et al. Nanoparticles-doped guest-host liquid crystal displays[J]. Opt Lett, 2008, 33(15): 1663-1665.
10 NazariA, Riahi S. The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete[J].Compos Part B: Eng, 2011, 42(3): 570-578.
11 Banerjee D, Sengupta S. Nanoparticles in cancer chemotherapy[J]. 2011, 104: 489-507.
12 Bull E, Madani SY, Sheth R, et al. Stem cell trac-king using iron oxide nanoparticles[J]. Int J Nanomedicine, 2014, 9: 1641-1653.
13 Henstock JR, Rotherham M, Rashidi H, et al. Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: applications for injectable cell therapy[J]. Stem Cells Transl Med, 2014, 3(11): 1363-1374.
14 Wang QW, Chen B, Cao M, et al. Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of h-BMSCs[J]. Biomaterials, 2016, 86: 11-20.
15 Ren MS, Wang Y, Luo Y, et al. Functionalized nano-particles in prevention and targeted therapy of viral diseases with neurotropism properties, special insight on COVID-19[J]. Front Microbiol, 2021, 12: 767104.
16 Witkowska E, Łasica AM, Niciński K, et al. In search of spectroscopic signatures of periodontitis: a SERS-based magnetomicrofluidic sensor for detection of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans [J]. ACS Sens, 2021, 6(4): 1621-1635.
17 秦尉. 多功能纳米微球特异性检测牙龈卟啉单胞菌的实验研究[D]. 天津: 天津医科大学, 2017.
Qin W. Experimental study on the detection of Porphyromonas gingivalis with multifunctional nanospheres[D]. Tianjin: Tianjin Medical Unversity, 2017.
18 Muzammil, Jayanthi D, Faizuddin M, et al. Association of interferon lambda-1 with herpes simplex viruses-1 and -2, Epstein-Barr virus, and human cytomegalovirus in chronic periodontitis[J]. J Investig Clin Dent, 2017, 8(2). doi: 10.1111/jicd.12200 .
doi: 10.1111/jicd.12200
19 Cekici A, Kantarci A, Hasturk H, et al. Inflammatory and immune pathways in the pathogenesis of pe-riodontal disease[J]. Periodontol 2000, 2014, 64(1): 57-80.
20 戴智赫. 磁性上转换微球检测龈下菌斑中单纯疱疹病毒的研究[D]. 天津: 天津医科大学, 2018.
Dai ZH. Study on specific detection of herpes simplex virus in subgingival plague by magnetic upconversion microspheres[D]. Tianjin: Tianjin Medical Unversity, 2018.
21 Junmahasathien T, Panraksa P, Protiarn P, et al. Preparation and evaluation of metronidazole-loaded pectin films for potentially targeting a microbial infection associated with periodontal disease[J]. Polymers (Basel), 2018, 10(9): E1021.
22 Rams TE, Degener JE, van Winkelhoff AJ. Antibio-tic resistance in human chronic periodontitis microbiota[J]. J Periodontol, 2014, 85(1): 160-169.
23 Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles[J]. Nanomedicine, 2007, 3(1): 95-101.
24 Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism[J]. Nanomicro Lett, 2015, 7(3): 219-242.
25 Yin IX, Zhang J, Zhao IS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry[J]. Int J Nanomedicine, 2020, 15: 2555-2562.
26 Durán N, Nakazato G, Seabra AB. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments[J]. Appl Microbiol Biotechnol, 2016, 100(15): 6555-6570.
27 Lu Z, Rong KF, Li J, et al. Size-dependent antibacterial activities of silver nanoparticles against oral a-naerobic pathogenic bacteria[J]. J Mater Sci Mater Med, 2013, 24(6): 1465-1471.
28 Holden MS, Black J, Lewis A, et al. Antibacterial activity of partially oxidized Ag/Au nanoparticles against the oral pathogen Porphyromonas gingivalis W83[J]. J Nanomater, 2016, 2016: 9605906.
29 Wu T, Huang L, Sun J, et al. Multifunctional chitin-based barrier membrane with antibacterial and osteogenic activities for the treatment of periodontal disease[J]. Carbohydr Polym, 2021, 269: 118276.
30 Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury[J]. Brain Res, 2015, 1619: 1-11.
31 Bai X, Chen D, Dai Y, et al. Bone formation reco-very with gold nanoparticle-induced M2 macrophage polarization in mice[J]. Nanomedicine, 2021,38:102457.
32 Ni C, Zhou J, Kong N, et al. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment[J]. Biomaterials, 2019, 206: 115-132.
33 Li X, Qi ML, Li CY, et al. Novel nanoparticles of cerium-doped zeolitic imidazolate frameworks with dual benefits of antibacterial and anti-inflammatory functions against periodontitis[J]. J Mater Chem B, 2019, 7(44): 6955-6971.
34 Tsai CY, Lu SL, Hu CW, et al. Size-dependent atte-nuation of TLR9 signaling by gold nanoparticles in macrophages[J]. J Immunol, 2012, 188(1): 68-76.
35 Kong LX, Peng Z, Li SD, et al. Nanotechnology and its role in the management of periodontal disea-ses[J]. Periodontol 2000, 2006, 40: 184-196.
36 Martin V, Ribeiro IAC, Alves MM, et al. Understanding intracellular trafficking and anti-inflammatory effects of minocycline chitosan-nanoparticles in human gingival fibroblasts for periodontal di-sease treatment[J]. Int J Pharm, 2019, 572: 118821.
37 Sun QH, Zhou ZX, Qiu NS, et al. Rational design of cancer nanomedicine: nanoproperty integration and synchronization[J]. Adv Mater, 2017, 29(14). doi:10.1002/adma.201606628 .
doi: 10.1002/adma.201606628
38 Emmanuel R, Palanisamy S, Chen SM, et al. Antimicrobial efficacy of green synthesized drug blen-ded silver nanoparticles against dental caries and periodontal disease causing microorganisms[J]. Mater Sci Eng C Mater Biol Appl, 2015, 56: 374-379.
39 秦黎黎, 秦瑶, 卢天凤. 纳米材料作为药物载体在运动性损伤修复中的应用[J]. 同济大学学报(医学版), 2021, 42(2): 271-277.
Qin LL, Qin Y, Lu TF. Application of nanomaterials as drug carrier in the athletic injury repair[J]. J Tongji Univ (Med Sci), 2021, 42(2): 271-277.
40 Backlund CJ, Worley BV, Sergesketter AR, et al. Kinetic-dependent killing of oral pathogens with nitric oxide[J]. J Dent Res, 2015, 94(8): 1092-1098.
41 Liu ZN, Chen X, Zhang ZP, et al. Nanofibrous spongy microspheres to distinctly release miRNA and growth factors to enrich regulatory T cells and rescue periodontal bone loss[J]. ACS Nano, 2018, 12(10): 9785-9799.
42 王煦漫, 古宏晨, 杨正强, 等. 磁热疗用Fe3O4在交变磁场中的热效应[J]. 上海交通大学学报, 2005, 2005(2): 275-278.
Wang XM, Gu HC, Yang ZQ, et al. The heat effect of magnetite for hyperthermia under alternating magnetic field[J]. J Shanghai Jiaotong Univ, 2005, 2005(2): 275-278.
43 de Alcântara Sica de Toledo L, Rosseto HC, dos Santos RS, et al. Thermal magnetic field activated propolis release from liquid crystalline system based on magnetic nanoparticles[J]. AAPS Pharm Sci Tech, 2018, 19(7): 3258-3271.
44 Xiong F, Wang H, Feng YD, et al. Cardioprotective activity of iron oxide nanoparticles[J]. Sci Rep, 2015, 5: 8579.
45 Zhang YH, Kong N, Zhang YC, et al. Size-dependent effects of gold nanoparticles on osteogenic differentiation of human periodontal ligament progenitor cells[J]. Theranostics, 2017, 7(5): 1214-1224.
46 Wang QW, Chen B, Ma F, et al. Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2[J]. Nano Res, 2017, 10(2): 626-642.
47 Zhang YH, Wang P, Wang YX, et al. Gold nanoparticles promote the bone regeneration of periodontal ligament stem cell sheets through activation of autophagy[J]. Int J Nanomedicine, 2021, 16: 61-73.
48 Xia Y, Chen HM, Zhao YT, et al. Novel magnetic calcium phosphate-stem cell construct with magne-tic field enhances osteogenic differentiation and bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 30-41.
49 Jiang PF, Zhang YX, Zhu CN, et al. Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field[J]. Acta Biomater, 2016, 46: 141-150.
50 Ren SS, Zhou Y, Zheng K, et al. Cerium oxide nano-particles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering[J]. Bioact Mater, 2022, 7: 242-253.
51 Peng WZ, Ren SS, Zhang YB, et al. MgO nanoparticles-incorporated PCL/gelatin-derived coaxial electrospinning nanocellulose membranes for periodontal tissue regeneration[J]. Front Bioeng Biotechnol, 2021, 9: 668428.
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Wang Nannan,He Hong,Hua Fang. Research progress on the risk factors of orthodontically induced enamel demineralization [J]. Int J Stomatol, 2024, 51(1): 91-98.
[3] Han Chong,He Dongning,Yu Feiyan,Wu Dongchao. Research progress on the mechanism and treatment of pain after oral implants [J]. Int J Stomatol, 2024, 51(1): 99-106.
[4] Sun Xu,Deng Zhennan,Wen Cai,Zhao Ying. Implant surface micromorphological changes after Er: YAG laser irradiation observed under scanning electron microscope [J]. Int J Stomatol, 2023, 50(6): 669-673.
[5] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[6] Liu Yang,Yin Deqiang. Introducing a novel digital articulation workflow with high precision [J]. Int J Stomatol, 2023, 50(5): 499-505.
[7] Li Yijun, Xu Ziang, Li Yi.. Research progress on the sentinel lymph nodes in the detection of head and neck squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(5): 521-527.
[8] Ji Xiao,Zhang Lan,Huang Dingming.. Diagnosis and treatment of odontogenic and non-odontogenic maxillary sinusitis [J]. Int J Stomatol, 2023, 50(5): 566-572.
[9] Zhao Yuanxi,Su Qin.. Application and development of supplementary techniques in removing the remaining filling materials of root canal retreatment [J]. Int J Stomatol, 2023, 50(5): 581-586.
[10] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[11] Liu Ting,Wu Xiuping.. Research progress on oral-craniomaxillofacial features and treatment of Down syndrome [J]. Int J Stomatol, 2023, 50(5): 618-622.
[12] Jiang Yueying,He Yutian,Li Ting,Zhou Ronghui.. Research progress on the application of near infrared fluorescence probe in the diagnosis of oral cancer [J]. Int J Stomatol, 2023, 50(4): 407-413.
[13] Xia Weiyao,Luo Yankun,Jia Zhonglin. Review of the precise diagnosis and genetic etiology of Pierre Robin sequence [J]. Int J Stomatol, 2023, 50(3): 287-292.
[14] Qin Yichun,Tan Xuelian,Huang Dingming.. Clinical research progress on glandular odontogenic cyst [J]. Int J Stomatol, 2023, 50(1): 100-107.
[15] Li Ting,Yang Xuecai,Wang Junwei.. Children with Williams-Beuren syndrome associated with cranial and maxillofacial deformity [J]. Int J Stomatol, 2023, 50(1): 108-113.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .