Int J Stomatol ›› 2024, Vol. 51 ›› Issue (1): 99-106.doi: 10.7518/gjkq.2024002

• Reviews • Previous Articles     Next Articles

Research progress on the mechanism and treatment of pain after oral implants

Han Chong1(),He Dongning2(),Yu Feiyan2,Wu Dongchao1   

  1. 1.School of Stomatology, Shanxi Medical University, Taiyuan 030001, China
    2.Dept. of Dental Implantology, Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
  • Received:2023-02-28 Revised:2023-07-06 Online:2024-01-01 Published:2024-01-10
  • Contact: Dongning He;
  • Supported by:
    National Natural Science Foundation of China(82001075);Natural Science Foundation of the Science and Technology Department of Shanxi Province(202103021224232)


With the rapid development of dental implant technology, the use of oral implants to replace missing teeth has gradually become a routine restorative modality in patients with dentition defects or dentition loss. However, dental implant surgery is an invasive treatment, and the postoperative pain of surgery after implant placement occurs despite accurate evaluation and careful treatment. Postoperative pain will affect the daily life of patients, such as language communication, chewing, and swallowing, and in serious cases, even cause medical accidents. With the popularity of implant surgery, numerous patients may suffer from post-implant pain in the future. In particular, neuropathic pain after dental implants remains difficult to treat, and the efficacy of therapeutic drugs is often inaccurate, which is related to various adverse effects. This article introduces the related mechanisms of pain after dental implants, gives an overview of the treatment of pain after dental implants, and proposes potential targets for the future treatment of neuropathic pain after dental implants in the context of current research hotspots. This paper aims to provide new ideas for conducting relevant clinical studies.

Key words: dental implants, neuropathic pain, central sensitization, peripheral sensitization, target treatment

CLC Number: 

  • R783.4

1 Adler L, Buhlin K, Jansson L. Survival and complications: a 9- to 15-year retrospective follow-up of dental implant therapy[J]. J Oral Rehabil, 2020, 47(1): 67-77.
2 Al-Sabbagh M, Okeson JP, Khalaf MW, et al. Persistent pain and neurosensory disturbance after dental implant surgery: pathophysiology, etiology, and dia-gnosis[J]. Dent Clin North Am, 2015, 59(1): 131-142.
3 Kim S, Lee YJ, Lee S, et al. Assessment of pain and anxiety following surgical placement of dental implants[J]. Int J Oral Maxillofac Implants, 2013, 28(2): 531-535.
4 Vázquez-Delgado E, Viaplana-Gutiérrez M, Figuei-redo R, et al. Prevalence of neuropathic pain and sensory alterations after dental implant placement in a university-based oral surgery department: a retrospective cohort study[J]. Gerodontology, 2018, 35(2): 117-122.
5 Wu XY, Ye MJ, Sun JH, et al. Patient-reported outcome measures following surgeries in implant dentistry and associated factors: a cross-sectional study[J]. BMJ Open, 2022, 12(6): e059730.
6 Delcanho R, Moncada E. Persistent pain after dental implant placement: a case of implant-related nerve injury[J]. J Am Dent Assoc, 2014, 145(12): 1268-1271.
7 Khouly I, Braun RS, Ordway M, et al. Post-operative pain management in dental implant surgery: a systematic review and meta-analysis of randomized clinical trials[J]. Clin Oral Investig, 2021, 25(5): 2511-2536.
8 Bryce G, Bomfim DI, Bassi GS. Pre- and post-ope-rative management of dental implant placement. Part 1: management of post-operative pain[J]. Br Dent J, 2014, 217(3): 123-127.
9 Amadou-Diaw N, Braud A, Y.Persistent Boucher, neuropathic-like trigeminal pain after dental implant loading[J]. J Clin Exp Dent, 2022, 14(2): e185-e191.
10 Kim HK, Kim ME. Quantitative and qualitative sensory testing results are associated with numbness rather than neuropathic pain in patients with post-implant trigeminal neuropathy: a cross-sectional pilot study[J]. Somatosens Mot Res, 2019, 36(3): 202-211.
11 Juodzbalys G, Wang HL, Sabalys G. Injury of the inferior alveolar nerve during implant placement: a literature review[J]. J Oral Maxillofac Res, 2011, 2(1): e1.
12 Chichorro JG, Porreca F, Sessle B. Mechanisms of craniofacial pain[J]. Cephalalgia, 2017, 37(7): 613-626.
13 Hossain MZ, Ando H, Unno S, et al. Targeting peripherally restricted cannabinoid receptor 1, cannabinoid receptor 2, and endocannabinoid-degrading enzymes for the treatment of neuropathic pain inclu-ding neuropathic orofacial pain[J]. Int J Mol Sci, 2020, 21(4): 1423.
14 Sessle BJ. Chronic orofacial pain: models, mechanisms, and genetic and related environmental in-fluences[J]. Int J Mol Sci, 2021, 22(13): 7112.
15 Halievski K, Ghazisaeidi S, Salter MW. Sex-dependent mechanisms of chronic pain: a focus on microglia and P2X4R[J]. J Pharmacol Exp Ther, 2020, 375(1): 202-209.
16 Danyluk H, Ishaque A, Ta D, et al. MRI texture analysis reveals brain abnormalities in medically refractory trigeminal neuralgia[J]. Front Neurol, 2021, 12: 626504.
17 Tohyama S, Hung PS, Cheng JC, et al. Trigeminal neuralgia associated with a solitary pontine lesion: clinical and neuroimaging definition of a new syndrome[J]. Pain, 2020, 161(5): 916-925.
18 Danyluk H, Andrews J, Kesarwani R, et al. The tha-lamus in trigeminal neuralgia: structural and metabolic abnormalities, and influence on surgical response[J]. BMC Neurol, 2021, 21(1): 290.
19 Ye Y, Salvo E, Romero-Reyes M, et al. Glia and orofacial pain: progress and future directions[J]. Int J Mol Sci, 2021, 22(10): 5345.
20 Ikeda H, Kiritoshi T, Murase K. Contribution of microglia and astrocytes to the central sensitization, inflammatory and neuropathic pain in the juvenile rat[J]. Mol Pain, 2012, 8: 43.
21 Yin N, Yan ES, Duan WB, et al. The role of micro-glia in chronic pain and depression: innocent bystan-der or culprit[J]. Psychopharmacology, 2021, 238(4): 949-958.
22 Iwata K, Katagiri A, Shinoda M. Neuron-glia interaction is a key mechanism underlying persistent orofacial pain[J]. J Oral Sci, 2017, 59(2): 173-175.
23 North RA. P2X receptors[J]. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1700): 20150427.
24 Jané-Salas E, Roselló-LLabrés X, Jané-Pallí E, et al. Open flap versus flapless placement of dental implants. A randomized controlled pilot trial[J]. Odontology, 2018, 106(3): 340-348.
25 Mei CC, Lee FY, Yeh HC. Assessment of pain perception following periodontal and implant surgeries[J]. J Clin Periodontol, 2016, 43(12): 1151-1159.
26 Wang MJ, Li YY, Li JY, et al. The risk of moderate-to-severe post-operative pain following the placement of dental implants[J]. J Oral Rehabil, 2019, 46(9): 836-844.
27 Mattos-Pereira GH, Martins CC, Esteves-Lima RP, et al. Preemptive analgesia in dental implant surgery: a systematic review and meta-analysis of randomized controlled trials[J]. Med Oral Patol Oral Cir Bucal, 2021, 26(5): e632-e641.
28 Sánchez-Siles M, Torres-Diez LC, Camacho-Alonso F, et al. High volume local anesthesia as a postoperative factor of pain and swelling in dental implants[J]. Clin Implant Dent Relat Res, 2014, 16(3): 429-434.
29 Porporatti AL, Bonjardim LR, Stuginski-Barbosa J, et al. Pain from dental implant placement, inflammatory pulpitis pain, and neuropathic pain present different somatosensory profiles[J]. J Oral Facial Pain Headache, 2017, 31(1): 19-29.
30 Zhang X, Wang B, Qiao SC, et al. A study on the prevalence of dental anxiety, pain perception, and their interrelationship in Chinese patients with oral implant surgery[J]. Clin Implant Dent Relat Res, 2019, 21(3): 428-435.
31 Urban T, Wenzel A. Discomfort experienced after immediate implant placement associated with three different regenerative techniques[J]. Clin Oral Implants Res, 2010, 21(11): 1271-1277.
32 Al-Sabbagh M, Okeson JP, Bertoli E, et al. Persistent pain and neurosensory disturbance after dental implant surgery: prevention and treatment[J]. Dent Clin North Am, 2015, 59(1): 143-156.
33 Al-Khabbaz AK, Griffin TJ, Al-Shammari KF. Assessment of pain associated with the surgical placement of dental implants[J]. J Periodontol, 2007, 78(2): 239-246.
34 Khan J, Zusman T, Wang Q, et al. Acute and chronic pain in orofacial trauma patients[J]. Dent Traumatol, 2019, 35(6): 348-357.
35 Díaz-Rodríguez L, García-Martínez O, Arroyo-Morales M, et al. Effect of acetaminophen (parace-tamol) on human osteosarcoma cell line MG63[J]. Acta Pharmacol Sin, 2010, 31(11): 1495-1499.
36 Kellinsalmi M, Parikka V, Risteli J, et al. Inhibition of cyclooxygenase-2 down-regulates osteoclast and osteoblast differentiation and favours adipocyte formation in vitro [J]. Eur J Pharmacol, 2007, 572(2/3): 102-110.
37 郑小菲, 游智惟, 莫安春. 非甾体类抗炎药对种植体周围骨愈合和骨改建的影响[J]. 国际口腔医学杂志, 2015, 42(2): 184-188.
Zheng XF, You ZW, Mo AC. Effect of non-steroidal anti-inflammatory drug on healing and remolding of peri-implant bones[J]. Int J Stomatol, 2015, 42(2): 184-188.
38 Winnett B, Tenenbaum HC, Ganss B, et al. Periope-rative use of non-steroidal anti-inflammatory drugs might impair dental implant osseointegration[J]. Clin Oral Implants Res, 2016, 27(2): e1-e7.
39 Chopra D, Rehan HS, Mehra P, et al. A randomized, double-blind, placebo-controlled study comparing the efficacy and safety of paracetamol, serratiopeptidase, ibuprofen and betamethasone using the dental impaction pain model[J]. Int J Oral Maxillofac Surg, 2009, 38(4): 350-355.
40 Walsh S, Jordan GR, Jefferiss C, et al. High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid-induced osteoporosis[J]. Rheumato-logy, 2001, 40(1): 74-83.
41 Okeson JP. Bell’s oral and facial pain[M]. 7th ed. Chicago: Quintessence Publishing Co, Inc, 2014: 185-186.
42 Melini M, Forni A, Cavallin F, et al. Analgesics for dental implants: a systematic review[J]. Front Pharmacol, 2020, 11: 634963.
43 Politis C, Agbaje J, van Hevele J, et al. Report of neuropathic pain after dental implant placement: a case series[J]. Int J Oral Maxillofac Implants, 2017, 32(2): 439-444.
44 Zakrzewska JM. Medical management of trigeminal neuropathic pains[J]. Expert Opin Pharmacother, 2010, 11(8): 1239-1254.
45 Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis[J]. Lancet Neurol, 2015, 14(2): 162-173.
46 Alvarez P, Brun A, Labertrandie A, et al. Antihype-ralgesic effects of clomipramine and tramadol in a model of posttraumatic trigeminal neuropathic pain in mice[J]. J Orofac Pain, 2011, 25(4): 354-363.
47 Lau BK, Vaughan CW. Targeting the endogenous cannabinoid system to treat neuropathic pain[J]. Front Pharmacol, 2014, 5: 28.
48 Michot B, Bourgoin S, Kayser V, et al. Effects of tapentadol on mechanical hypersensitivity in rats with ligatures of the infraorbital nerve versus the sciatic nerve[J]. Eur J Pain, 2013, 17(6): 867-880.
49 Duehmke RM, Derry S, Wiffen PJ, et al. Tramadol for neuropathic pain in adults[J]. Cochrane Database Syst Rev, 2017, 6(6): CD003726.
50 Kopruszinski CM, Reis RC, Chichorro JG. B vitamins relieve neuropathic pain behaviors induced by infraorbital nerve constriction in rats[J]. Life Sci, 2012, 91(23/24): 1187-1195.
51 Deseure K, Hans GH. Differential drug effects on spontaneous and evoked pain behavior in a model of trigeminal neuropathic pain[J]. J Pain Res, 2017, 10: 279-286.
52 Zhang M, Hu M, Montera MA, et al. Sustained relief of trigeminal neuropathic pain by a blood-brain barrier penetrable PPAR gamma agonist[J]. Mol Pain, 2019, 15: 1744806919884498.
53 Nagakura Y, Nagaoka S, Kurose T. Potential mole-cular targets for treating neuropathic orofacial pain based on current findings in animal models[J]. Int J Mol Sci, 2021, 22(12): 6406.
54 Yang YJ, Hu L, Xia YP, et al. Resveratrol suppres-ses glial activation and alleviates trigeminal neuralgia via activation of AMPK[J]. J Neuroinflammation, 2016, 13(1): 84.
55 Michot B, Kayser V, Hamon M, et al. CGRP receptor blockade by MK-8825 alleviates allodynia in infraorbital nerve-ligated rats[J]. Eur J Pain, 2015, 19(2): 281-290.
56 Osteen JD, Herzig V, Gilchrist J, et al. Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain[J]. Nature, 2016, 534(7608): 494-499.
57 Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway[J]. Nature, 1997, 389(6653): 816-824.
58 Li Q, Ma TL, Qiu YQ, et al. Connexin 36 mediates orofacial pain hypersensitivity through GluK2 and TRPA1[J]. Neurosci Bull, 2020, 36(12): 1484-1499.
59 Zhao JH, Lin King JV, Paulsen CE, et al. Irritant-evoked activation and calcium modulation of the TRPA1 receptor[J]. Nature, 2020, 585(7823): 141-145.
60 Lin King JV, Emrick JJ, Kelly MJS, et al. A cell-penetrating scorpion toxin enables mode-specific modulation of TRPA1 and pain[J]. Cell, 2019, 178(6): 1362-1374.e16.
61 Mika J, Osikowicz M, Rojewska E, et al. Differential activation of spinal microglial and astroglial cells in a mouse model of peripheral neuropathic pain[J]. Eur J Pharmacol, 2009, 623(1/2/3): 65-72.
62 Gao YJ, Ji RR. Light touch induces ERK activation in superficial dorsal horn neurons after inflammation: involvement of spinal astrocytes and JNK signaling in touch-evoked central sensitization and mechanical allodynia[J]. J Neurochem, 2010, 115(2): 505-514.
63 Ziccardi VB. Microsurgical techniques for repair of the inferior alveolar and lingual nerves[J]. Atlas Oral Maxillofac Surg Clin North Am, 2011, 19(1): 79-90.
64 Renton T, Yilmaz Z. Managing iatrogenic trigeminal nerve injury: a case series and review of the lite-rature[J]. Int J Oral Maxillofac Surg, 2012, 41(5): 629-637.
65 Habre-Hallage P, Dricot L, Jacobs R, et al. Brain plasticity and cortical correlates of osseoperception revealed by punctate mechanical stimulation of osseointegrated oral implants during fMRI[J]. Eur J Oral Implantol, 2012, 5(2): 175-190.
66 Henssen D, Kurt E, van Walsum AVC, et al. Motor cortex stimulation in chronic neuropathic orofacial pain syndromes: a systematic review and meta-ana-lysis[J]. Sci Rep, 2020, 10(1): 7195.
67 Yu FY, Li M, Wang QQ, et al. Spatiotemporal dynamics of brain function during the natural course in a dental pulp injury model[J]. Eur J Nucl Med Mol Imaging, 2022, 49(8): 2716-2722.
68 Conti PCR, Bonjardim LR, Stuginski-Barbosa J, et al. Pain complications of oral implants: is that an issue[J]. J Oral Rehabil, 2021, 48(2): 195-206.
69 Pogrel MA, Jergensen R, Burgon E, et al. Long-term outcome of trigeminal nerve injuries related to dental treatment[J]. J Oral Maxillofac Surg, 2011, 69(9): 2284-2288.
[1] Liao Honglin,Fang Zhonghan,Zhang Yanyan,Liu Fei,Shen Jiefei.. Diagnosis and treatment of post-traumatic trigeminal neuropathic pain after dental implantation [J]. Int J Stomatol, 2023, 50(6): 729-738.
[2] Kun Cao,Jiafeng Li,Yuhua Sun,Qiang Bao,Qiuning Lu,Wei Tang. Evaluating of the submandibular fossa by cone beam CT [J]. Inter J Stomatol, 2019, 46(2): 209-212.
[3] Wang Xiaona, Zhao Jinghui, Chu Shunli, Zhou Yanmin. Effect of bone substitutes in oral implants on bone formation [J]. Inter J Stomatol, 2016, 43(1): 113-.
[4] Gou Min, Cai Xiaoxiao. . Effect of implant-abutment microgap on bone tissues surrounding the necks of implants [J]. Int J Stomatol, 2015, 42(6): 733-738.
[5] Li Guanda, Teng Minhua, Zhou Fengjuan, Ye Jun, Cheng Xianji, Mo Anchun. Short-term clinical evaluation of minimally invasive osteotome sinus augmentation technique with minimal crestal bone [J]. Inter J Stomatol, 2013, 40(6): 714-717.
[6] TU Hui-juan, LIN Ping, YE Ping, ZHANG Zuo. Research progress on esthetic figure of papilla for implant-supported denture[J]. Inter J Stomatol, 2009, 36(4): 462-465.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .