Int J Stomatol ›› 2019, Vol. 46 ›› Issue (5): 552-557.doi: 10.7518/gjkq.2019053

• Reviews • Previous Articles     Next Articles

Research progress on metal-organic frameworks and their complex in biomedical field

Jiang Xiaoge1,Wu Jiaxin1,Pei Xibo2()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-09-20 Revised:2019-04-17 Online:2019-09-01 Published:2019-09-10
  • Contact: Xibo Pei
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81601613);Talent Training Platform Special Construction Project of Sichuan University(SCUKG015)


Metal-organic frameworks (MOFs), also known as coordination polymers, is a new type of organic-inorganic hybrid crystalline porous materials. It is composed of a metal ion or metal ion cluster as the node and a polydentate organic ligand as the join point. The regular network skeleton structure is formed by their self-assembly. The special property of MOFs and their complex promotes their applications in biomedicine. The research directions at present include implant surface coating modification, drug loading, gas storage and imaging. The review of the literature attempts to address the application of MOFs in biomedicine.

Key words: metal-organic framework, modification, drug delivery, gas storage, imaging

CLC Number: 

  • R783.1

[1] Chernikova V, Shekhah O, Eddaoudi M . Advanced fabrication method for the preparation of MOF thin films: liquid-phase epitaxy approach meets spin coating method[J]. ACS Appl Mater Interfaces, 2016,8(31):20459-20464.
[2] Furukawa H, Müller U, Yaghi OM . “Heterogeneity within order” in metal-organic frameworks[J]. Angew Chem Int Ed Engl, 2015,54(11):3417-3430.
[3] Hoskins BF, Robson R . Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. J Am Chem Soc, 1989,111(15):5962-5964.
[4] Civantos A , MartínezCampos E, Ramos V, et al. Titanium coatings surface modifications: toward clinically useful bioactive implants[J]. ACS Biomater Sci Eng, 2017,3(7):1245-1261.
[5] Yurttutan ME, Keskin A . Evaluation of the effects of different sand particles that used in dental implant roughened for osseointegration[J]. BMC Oral Health, 2018,18(1):47.
[6] Brunetto PS, Slenters TV, Fromm KM . In vitro biocompatibility of new silver (Ⅰ) coordination compound coated-surfaces for dental implant applications[J]. Materials (Basel), 2011,4(2):355-367.
[7] Chen J, Zhang X, Huang C , et al. Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films[J]. J Biomed Mater Res A, 2017,105(3):834-846.
[8] Zhang X, Chen J, Pei X , et al. Enhanced osseointegration of porous titanium modified with zeolitic imidazolate framework-8[J]. ACS Appl Mater Interfaces, 2017,9(30):25171-25183.
[9] Gao X, Hai X, Baigude H , et al. Fabrication of functional hollow microspheres constructed from MOF shells: promising drug delivery systems with high loading capacity and targeted transport[J]. Sci Rep, 2016,6:37705.
[10] Shu F, Lv D, Song XL , et al. Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging[J]. Rsc Advances, 2018,8(12):6581-6589.
[11] Sun CY, Qin C, Wang XL , et al. Metal-organic frameworks as potential drug delivery systems[J]. Expert Opin Drug Deliv, 2013,10(1):89-101.
[12] Horcajada P, Serre C, Vallet-Regí M , et al. Metal-organic frameworks as efficient materials for drug delivery[J]. Angew Chem Int Ed Engl, 2006,45(36):5974-5978.
[13] Tan LL, Li H, Qiu YC , et al. Stimuli-responsive metal-organic frameworks gated by pillar[5]arene supramolecular switches[J]. Chem Sci, 2015,6(3):1640-1644.
[14] Wu YN, Zhou M, Li S , et al. Magnetic metal-organic frameworks: γ-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery[J]. Small, 2014,10(14):2927-2936.
[15] Ke F, Yuan YP, Qiu LG , et al. Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery[J]. J Mater Chem, 2011,21(11):3843-3848.
[16] Cunha D, Yahia MB, Hall S , et al. Rationale of drug encapsulation and release from biocompatible porous metal-organic frameworks[J]. Chem Mater, 2013,25(14):2767-2776.
[17] Zhu X, Gu J, Wang Y , et al. Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release[J]. Chem Commun (Camb), 2014,50(63):8779-8782.
[18] He C, Lu K, Liu D , et al. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells[J]. J Am Chem Soc, 2014,136(14):5181-5184.
[19] Lucena FR, de Araújo LC, Rodrigues Mdo D , et al. Induction of cancer cell death by apoptosis and slow release of 5-fluoracil from metal-organic frameworks Cu-BTC[J]. Biomed Pharmacother, 2013,67(8):707-713.
[20] Au KM, Satterlee A, Min Y , et al. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: turning a bone antiresorptive agent into an anticancer therapeutic[J]. Biomaterials, 2016,82:178-193.
[21] Chowdhuri AR, Laha D, Chandra S , et al. Synjournal of multifunctional upconversion NMOFs for targeted antitumor drug delivery and imaging in triple negative breast cancer cells[J]. Chem Eng J, 2017,319(Complete):200-211.
[22] Nabipour H, Soltani B, Ahmadi Nasab N . Gentamicin loaded Zn2(bdc)2(dabco) frameworks as efficient materials for drug delivery and antibacterial activity[J]. J Inorg Organomet P, 2018,28(3):1206-1213.
[23] Wo Y, Brisbois EJ, Bartlett RH , et al. Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO)[J]. Biomater Sci, 2016,4(8):1161-1183.
[24] Uzunova EL, Mikosch H . A theoretical study of nitric oxide adsorption and dissociation on copper-exchanged zeolites SSZ-13 and SAPO-34: the impact of framework acid-base properties[J]. Phys Chem Chem Phys, 2016,18(16):11233-11242.
[25] Xue C, Xu T . Metal-organic frameworks as host materials for storage and slow-releasing of medicinal nitric oxide[J]. Chemistry, 2013,76(12):1086-1090.
[26] Mckinlay AC, Xiao B, Wragg DS , et al. Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks[J]. J Am Chem Soc, 2008,130(31):10440-10444.
[27] Khan AH, Barth B, Hartmann M , et al. Nitric oxide adsorption in MIL-100(Al) MOF studied by solid-state NMR[J]. J Phys Chem C, 2018,112(24):12723-12730.
[28] Xiao B, Wheatley PS, Zhao X , et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework[J]. J Am Chem Soc, 2007,129(5):1203-1209.
[29] Katharina P, Frank H, Michael F , et al. Tuning the nitric oxide release behavior of amino functionalized HKUST-1[J]. Micropor Mesopor Mat, 2015,216:118-126.
[30] Nguyen JG, Tanabe KK, Cohen SM . Postsynthetic diazeniumdiolate formation and NO release from MOFs[J]. Cryst Eng Comm, 2010,12(8):2335-2338.
[31] Cohen SM . Postsynthetic methods for the functionalization of metal-organic frameworks[J]. Chem Rev, 2012,112(2):970-1000.
[32] Pinto RV, Antunes F, Pires J , et al. Vitamin B3 metal-organic frameworks as potential delivery vehicles for therapeutic nitric oxide[J]. Acta Biomater, 2017,51:66-74.
[33] Miller SE, Teplensky MH, Moghadam PZ , et al. Metal-organic frameworks as biosensors for luminescence-based detection and imaging[J]. Interface Focus, 2016,6(4):20160027.
[34] deKrafft KE, Xie Z, Cao G , et al. Iodinated nanoscale coordination polymers as potential contrast agents for computed tomography[J]. Angew Chem Int Ed Engl, 2009,48(52):9901-9904.
[35] Horcajada P, Chalati T, Serre C , et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nat Mater, 2010,9(2):172-178.
[36] Zhou J, Tian G, Zeng L , et al. Nanoscaled metal-organic frameworks for biosensing, imaging, and cancer therapy[J]. Adv Healthc Mater, 2018,7(10):e1800022.
[37] Cai W, Gao H, Chu C , et al. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided cancer therapy[J]. ACS Appl Mater Interfaces, 2017,9(3):2040-2051.
[38] Tian C, Zhu L, Lin F , et al. Poly(acrylic acid) bridged gadolinium metal-organic framework-gold nanoparticle composites as contrast agents for computed tomography and magnetic resonance bimodal imaging[J]. ACS Appl Mater Interfaces, 2015,7(32):17765-17775.
[39] Cai W, Gao H, Chu C , et al. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided cancer therapy[J]. ACS Appl Mater Interfaces, 2017,9(3):2040-2051.
[40] Wang D, Zhou J, Chen R , et al. Controllable synjournal of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy[J]. Biomaterials, 2016,100:27-40.
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Chen Runzhi,Zhang Wentao,Chen Feng,Yang Fan. Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering [J]. Int J Stomatol, 2023, 50(6): 739-746.
[3] Yan Zening,Sun Rui,Li Fei,Zhang Jiansen. Research progress on dual-energy CT in the evaluation of cervical lymph node disease [J]. Int J Stomatol, 2023, 50(3): 335-340.
[4] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[5] Liu Lijia,Mao Jing,Long Huan,Pu Yalong,Wang Jun. Research progress on two-dimensional and three-dimensional cephalometric automatic landmarking [J]. Int J Stomatol, 2022, 49(1): 100-108.
[6] Liang Yi,Pei Xibo,Wan Qianbing. Research progress on the biomedical applications of photosensitive hydrogels [J]. Int J Stomatol, 2022, 49(1): 12-18.
[7] Li Ming,Yuan Zhenying,Nan Xinrong. Correlation between the depth of invasion measured by magnetic resonance imaging and cervical lymph node metastasis in patients with tongue squamous cell carcinoma [J]. Int J Stomatol, 2021, 48(3): 312-317.
[8] Zhang Zihan,Xiong Xin,Wang Jun. Research status and application development of three-dimensional cephalometry [J]. Int J Stomatol, 2020, 47(6): 739-744.
[9] Wang Huan,Liu Yang,Qi Mengchun,Li Jingyi,Liu Mengnan,Sun Hong. Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation [J]. Int J Stomatol, 2020, 47(4): 439-444.
[10] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
[11] Liu Tongxi,Ke Xing,Yang Jian. Applications and prospects on endodontics based on magnetic resonance imaging [J]. Int J Stomatol, 2019, 46(6): 693-698.
[12] Cheng Guoping,Ding Yi,Guo Shujuan. Progress in electrospun fibres as periodontal drug delivery systems [J]. Int J Stomatol, 2019, 46(5): 565-570.
[13] Deng Chengdan,Shi Bing,Li Yang. Research progress on the brain structure and function of patients with cleft lip and palate [J]. Int J Stomatol, 2019, 46(5): 617-620.
[14] Yanli Liu,Wei Zhao,Biying Zhang,Xiaoli An. Research progress on maxillary protraction with skeletal anchorage in growing patients with Class Ⅲ malocclusion [J]. Inter J Stomatol, 2019, 46(1): 112-118.
[15] Mengqi Liu,Kuo Gai,Li Jiang. Research progress on oral implant materials with antimicrobial properties [J]. Inter J Stomatol, 2018, 45(5): 516-521.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .