Int J Stomatol ›› 2022, Vol. 49 ›› Issue (1): 100-108.doi: 10.7518/gjkq.2022006
• Orginal Article • Previous Articles Next Articles
Liu Lijia1(),Mao Jing1,Long Huan1,Pu Yalong1,Wang Jun2()
[1] | Cardillo J, Sid-Ahmed MA. An image processing system for locating craniofacial landmarks[J]. IEEE Trans Med Imaging, 1994,13(2):275-289. |
[2] | Medellín-Castillo HI, Govea-Valladares EH, Pérez-Guerrero CN, et al. The evaluation of a novel haptic-enabled virtual reality approach for computer-aided cephalometry[J]. Comput Methods Programs Bio-med, 2016,130:46-53. |
[3] | Cohen AM, Ip HH, Linney AD. A preliminary study of computer recognition and identification of skeletal landmarks as a new method of cephalometric a-nalysis[J]. Br J Orthod, 1984,11(3):143-154. |
[4] | Yun HS, Jang TJ, Lee SM, et al. Learning-based local-to-global landmark annotation for automatic 3D cephalometry[J]. Phys Med Biol, 2020,65(8):08-5018. |
[5] | Douglas TS. Image processing for craniofacial landmark identification and measurement: a review of photogrammetry and cephalometry[J]. Comput Med Imaging Graph, 2004,28(7):401-409. |
[6] | Tam WK, Lee HJ. Improving point correspondence in cephalograms by using a two-stage rectified point transform[J]. Comput Biol Med, 2015,65:114-123. |
[7] | Kafieh R, Mehri A, Sadri S. Automatic landmark detection in cephalometry using a modified active sha-pe model with sub image matching[C]// 2007 Int Conf Mach Vis. Isalambad, Pakistan: IEEE, 2007: 73-78. |
[8] | Leonardi R, Giordano D, Maiorana F, et al. Automatic cephalometric analysis[J]. Angle Orthod, 2008,78(1):145-151. |
[9] | Vandaele R, Aceto J, Muller M, et al. Landmark detection in 2D bioimages for geometric morphome-trics: a multi-resolution tree-based approach[J]. Sci Rep, 2018,8(1):538. |
[10] | Lindner C, Wang CW, Huang CT, et al. Fully automatic system for accurate localisation and analysis of cephalometric landmarks in lateral cephalograms[J]. Sci Rep, 2016,6:33581. |
[11] | Lévy-Mandel AD, Venetsanopoulos AN, Tsotsos JK. Knowledge-based landmarking of cephalograms[J]. Comput Biomed Res, 1986,19(3):282-309. |
[12] | Parthasarathy S, Nugent ST, Gregson PG, et al. Automatic landmarking of cephalograms[J]. Comput Biomed Res, 1989,22(3):248-269. |
[13] | Davis DN, Forsyth D. Knowledge-based cephalometric analysis: a comparison with clinicians using interactive computer methods[J]. Comput Biomed Res, 1994,27(3):210-228. |
[14] | Forsyth DB, Davis DN. Assessment of an automa-ted cephalometric analysis system[J]. Eur J Orthod, 1996,18(5):471-478. |
[15] | Cootes TF, Taylor CJ, Cooper DH, et al. Active shape models-their training and application[J]. Comput Vis Image Underst, 1995,61(1):38-59. |
[16] | Cootes TF, Taylor CJ. Statistical models of appea-rance for medical image analysis and computer vision[C]// Medical imaging 2001. San Diego, CA, USA: Image Processing, 2001,4322:236-248. |
[17] | Hutton TJ, Cunningham S, Hammond P. An evaluation of active shape models for the automatic identification of cephalometric landmarks[J]. Eur J Orthod, 2000,22(5):499-508. |
[18] | Rueda S, Alcañiz M. An approach for the automatic cephalometric landmark detection using mathematical morphology and active appearance models[J]. Med Image Comput Comput Assist Interv, 2006,9(Pt 1):159-166. |
[19] | Vucinić P, Trpovski Z, Sćepan I. Automatic landmarking of cephalograms using active appearance models[J]. Eur J Orthod, 2010,32(3):233-241. |
[20] | Kafieh R, Mehri A, Sadri S. Automatic landmark detection in cephalometry using a modified active sha-pe model with sub image matching[C]// 2007 International Conference on Machine Vision. December 28-29, 2007, Isalambad, Pakistan. IEEE, 2007: 73-78. |
[21] | Kaur A, Singh C. Automatic cephalometric landmark detection using Zernike moments and templa-te matching[J]. SIViP, 2015,9(1):117-132. |
[22] | Arık SÖ, Ibragimov B, Xing L. Fully automated quantitative cephalometry using convolutional neural networks[J]. J Med Imaging (Bellingham), 2017,4(1):014501. |
[23] | Kunz F, Stellzig-Eisenhauer A, Zeman F, et al. Artificial intelligence in orthodontics: evaluation of a fully automated cephalometric analysis using a customized convolutional neural network[J]. J Orofac Orthop, 2020,81(1):52-68. |
[24] | Park JH, Hwang HW, Moon JH, et al. Automated identification of cephalometric landmarks: part 1—comparisons between the latest deep-learning metho-ds YOLOV3 and SSD[J]. Angle Orthod, 2019,89(6):903-909. |
[25] | Hwang HW, Park JH, Moon JH, et al. Automated identification of cephalometric landmarks: part 2—might it be better than human[J]. Angle Orthod, 2020,90(1):69-76. |
[26] | Dai XB, Zhao H, Liu TL, et al. Locating anatomical landmarks on 2D lateral cephalograms through adversarial encoder-decoder networks[J]. IEEE Acce-ss, 2019,7:132738-132747. |
[27] | Wang CW, Huang CT, Hsieh MC, et al. Evaluation and comparison of anatomical landmark detection methods for cephalometric X-ray images: a grand challenge[J]. IEEE Trans Med Imaging, 2015,34(9):1890-1900. |
[28] | Wang CW, Huang CT, Lee JH, et al. A benchmark for comparison of dental radiography analysis algorithms[J]. Med Image Anal, 2016,31:63-76. |
[29] | Dot G, Rafflenbeul F, Arbotto M, et al. Accuracy and reliability of automatic three-dimensional ce-phalometric landmarking[J]. Int J Oral Maxillofac Surg, 2020,49(10):1367-1378. |
[30] | Neelapu BC, Kharbanda OP, Sardana V, et al. Automatic localization of three-dimensional cephalome-tric landmarks on CBCT images by extracting symmetry features of the skull[J]. Dentomaxillofac Radiol, 2018,47(2):20170054. |
[31] | Gupta A, Kharbanda OP, Sardana V, et al. A know-ledge-based algorithm for automatic detection of ce-phalometric landmarks on CBCT images[J]. Int J Comput Assist Radiol Surg, 2015,10(11):1737-1752. |
[32] | Gupta A, Kharbanda OP, Sardana V, et al. Accuracy of 3D cephalometric measurements based on an automatic knowledge-based landmark detection algorithm[J]. Int J Comput Assist Radiol Surg, 2016,11(7):1297-1309. |
[33] | Codari M, Caffini M, Tartaglia GM, et al. Computer-aided cephalometric landmark annotation for CBCT data[J]. Int J Comput Assist Radiol Surg, 2017,12(1):113-121. |
[34] | Shahidi S, Bahrampour E, Soltanimehr E, et al. The accuracy of a designed software for automated loca-lization of craniofacial landmarks on CBCT images[J]. BMC Med Imaging, 2014,14:32. |
[35] | Montúfar J, Romero M, Scougall-Vilchis RJ. Automatic 3-dimensional cephalometric landmarking ba-sed on active shape models in related projections[J]. Am J Orthod Dentofacial Orthop, 2018,153(3):449-458. |
[36] | Montúfar J, Romero M, Scougall-Vilchis RJ. Hybrid approach for automatic cephalometric landmark annotation on cone-beam computed tomography volumes[J]. Am J Orthod Dentofacial Orthop, 2018,154(1):140-150. |
[37] | Zhang J, Liu MX, Wang L, et al. Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization[J]. Med Image Anal, 2020,60:101621. |
[38] | Zhang J, Gao YZ, Wang L, et al. Automatic craniomaxillofacial landmark digitization via segmentation-guided partially-joint regression forest model and multiscale statistical features[J]. IEEE Trans Biomed Eng, 2016,63(9):1820-1829. |
[39] | de Jong MA, Gül A, de Gijt JP, et al. Automated human skull landmarking with 2D Gabor wavelets[J]. Phys Med Biol, 2018,63(10):105011. |
[40] | O’Neil AQ, Kascenas A, Henry J, et al. Attaining human-level performance with atlas location autocontext for anatomical landmark detection in 3D CT data[J]. Lect Notes Comput Sci, 2019: 470-484. |
[41] | Lachinov D, Getmanskaya A, Turlapov V. Cephalometric landmark regression with convolutional neural networks on 3D computed tomography data[J]. Pattern Recognit Image Anal, 2020,30(3):512-522. |
[42] | Lee SM, Kim HP, Jeon K, et al. Automatic 3D cephalometric annotation system using shadowed 2D image-based machine learning[J]. Phys Med Biol, 2019,64(5):055002. |
[43] | Zhang J, Liu MX, Wang L, et al. Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks[J]. Med Image Comput Comput Assist Interv, 2017,10434:720-728. |
[44] | Torosdagli N, Liberton DK, Verma P, et al. Deep geodesic learning for segmentation and anatomical landmarking[J]. IEEE Trans Med Imaging, 2019,38(4):919-931. |