Int J Stomatol ›› 2023, Vol. 50 ›› Issue (5): 528-537.doi: 10.7518/gjkq.2023062

• Original Articles • Previous Articles     Next Articles

Cone beam computed tomography study of maxillary sinus volume and oropharyngeal airway volume with diffe-rent vertical skeletal faces in adult skeletal Class Ⅱ patients

Liu Panming(),Li Zhengze,Li Junhe,Cui Shuxia.()   

  1. Dept. of Orthodontics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
  • Received:2023-01-18 Revised:2023-05-11 Online:2023-09-01 Published:2023-09-01
  • Contact: Shuxia. Cui E-mail:2609140896@qq.com;cui-shuxia@163.com

Abstract:

Objective This study aimed to evaluate the differences in maxillary sinus volume (MSV) and oropharyngeal airway volume with different vertical osseous faces in adult skeletal Class Ⅱ patients and explore the correlation between MSV and oropharyngeal airway. Methods A total of 90 adult patients with skeletal type Ⅱ were selected, and their age and gender were strictly matched. Using Mimics 21.0 software, 3D reconstruction of bilateral maxillary sinuses and oropharyngeal airways was performed on cone beam computed tomography (CBCT) images of all samples, and their volumes were calculated. SPSS 21.0 software was used for statistical analysis to compare the differences between MSV and oropharyngeal airway volume in different vertical bone profiles and genders and analyze the correlation between MSV and oropharyngeal airway volume. Results The average MSV of adult skeletal Class Ⅱ patients was (18 360.42±3 747.41) mm3, and there was no significant difference between the left and right MSV groups; males were significantly larger than females, and the difference was statistically significant (P<0.05); in the vertical bone surface type grouping, the group was significantly larger than the average and low angle group, the difference was statistically significant (P<0.01), the average angle group was greater than the low angle group, the difference was not statistically significant (P>0.05). The average oropharyngeal airway volume of adult skeletal Class Ⅱ patients was (17 517.80±6 056.33) mm3; males were significantly larger than females, and the difference was statistically significant (P<0.01); from the high angle group, the average angle group to the low angle group, the oropharyngeal airway volume gradually increased, and the difference was statistically significant (P<0.05). MSV was negatively correlated with oropharyngeal airway volume, and the correlation coefficient was -0.458 (P<0.01). Conclusion In adult patients with Class Ⅱ skeletal malocclusion, those with large mandibular plane angles had larger MSV and smaller oropharyngeal airway volume, and there was a significant negative correlation between MSV and oropharyngeal airway volume.

Key words: maxillary sinus volume, oropharyngeal airway, skeletal Class Ⅱ, vertical skeletal pattern, cone beam computed tomography

CLC Number: 

  • R 783.5

TrendMD: 

Fig 1

3D reconstruction and volume measurement of the maxillary sinus and oropharyngeal airway using Mimics"

Tab 1

Comparison of MSV and mean volume of oropharyngeal airway in different vertical bone surface groups"

测量项目高角均角低角总计P
3组比较高角和均角高角和低角均角和低角
男/女15/1515/1515/1545/45
平均年龄/岁27.60±5.3127.87±5.2526.20±3.8527.20±4.850.37
平均MSV/mm3

21 784.21±

3 594.99

17 150.10±

2 196.69

16 146.94±

2 576.41

18 360.42±

3 747.41

0.00**0.00**0.00**0.37
平均口咽气道体积/mm3

12 812.86±

2 815.84

17 626.10±

6 395.33

22 114.44±

4 355.27

17 517.80±

6 056.33

0.00**0.001*0.00**0.001*

Tab 2

Comparison of mean MSV and oropharyngeal airway volume in different genders"

测量项目P
人数/例4545
平均年龄/岁27.33±5.0327.11±4.730.83
平均MSV/mm319 324.12±4 109.2817 396.71±3 101.520.014*
平均口咽气道体积/mm319 208.73±5 668.2915 826.86±6 017.800.007*

Fig 2

Diagrams showing MSV"

Fig 3

Diagrams showing oropharyngeal airway volume"

Tab 3

Pearson correlation between MSV and oro-pharyngeal airway volume"

测量项目MSV上气道体积
MSVPearson相关性1-0.458**
Sig.(双尾)0
个案数9090
口咽气道体积Pearson相关性-0.458**1
Sig.(双尾)0
个案数9090

Fig 4

Scatter plot of MSV and oropharyngeal airway volume"

"

1 伍军, 徐宝华. 安氏Ⅱ类Ⅰ分类错𬌗的分型及其高低面角的颅面特征[J]. 口腔医学纵横, 1999, 15(3): 151-153.
Wu J, Xu BH. The subtypes of Angle Class Ⅱ division Ⅰ malocclusion and the maxillofical morphologic features of high and low mandibular angle[J]. J Compr Stomatol, 1999, 15(3): 151-153.
2 翁嘉华, 蔡斌, 麦理想, 等. 锥形束CT扫描测量不同矢状骨面型青少年上颌窦大小[J]. 中华口腔医学研究杂志(电子版), 2012, 6(1): 65-72.
Weng JH, Cai B, Mai LX, et al. Evaluation of maxillary sinus sizes in adolescence of different sagittal skeletal patterns on cone-beam computed tomography images[J]. Chin J Stomatol Res (Electron Ed), 2012, 6(1): 65-72.
3 El H, Palomo JM. Airway volume for different dentofacial skeletal patterns[J]. Am J Orthod Dentofac Orthop, 2011, 139(6): e511-e521.
4 Emirzeoglu M, Sahin B, Bilgic S, et al. Volumetric evaluation of the paranasal sinuses in normal subjects using computer tomography images: a stereological study[J]. Auris Nasus Larynx, 2007, 34(2): 191-195.
5 Scuderi AJ, Harnsberger HR, Boyer RS. Pneumatization of the paranasal sinuses: normal features of importance to the accurate interpretation of CT scans and MR images[J]. Am J Roentgenol, 1993, 160(5): 1101-1104.
6 Sharan A, Madjar D. Maxillary sinus pneumatization following extractions: a radiographic study[J]. Int J Oral Maxillofac Implants, 2008, 23(1): 48-56.
7 Ariji Y, Kuroki T, Moriguchi S, et al. Age changes in the volume of the human maxillary sinus: a study using computed tomography[J]. Dentomaxillofac Ra-diol, 1994, 23(3): 163-168.
8 Woo I, Le BT. Maxillary sinus floor elevation: review of anatomy and two techniques[J]. Implant Dent, 2004, 13(1): 28-32.
9 Zeynep OA, Alper OA, Hakan E, et al. Maxillary sinus volume in patients with impacted canines[J]. Angle Orthod, 2017, 87(1): 25-32.
10 Schendel SA, Jacobson R, Khalessi S. Airway grow-th and development: a computerized 3-dimensional analysis[J]. J Oral Maxillofac Surg, 2012, 70(9): 2174-2183.
11 Li L, Liu H, Cheng HJ, et al. CBCT evaluation of the upper airway morphological changes in growing patients of Class Ⅱ division 1 malocclusion with mandibular retrusion using twin block appliance: a comparative research[J]. PLoS One, 2014, 9(4): e94378.
12 Banno K, Kryger MH. Sleep apnea: clinical investigations in humans[J]. Sleep Med, 2007, 8(4): 400-426.
13 Li M, Li XY, Lu Y. Obstructive sleep apnea syndrome and metabolic diseases[J]. Endocrinology, 2018, 159(7): 2670-2675.
14 Maestre-Ferrín L, Galán-Gil S, Carrillo-García C, et al. Radiographic findings in the maxillary sinus: comparison of panoramic radiography with compu-ted tomography[J]. Int J Oral Maxillofac Implants, 2011, 26(2): 341-346.
15 Ryan CF, Lowe AA, Li D, et al. Magnetic resonance imaging of the upper airway in obstructive sleep apnea before and after chronic nasal continuous positive airway pressure therapy[J]. Am Rev Respir Dis, 1991, 144(4): 939-944.
16 Schwab RJ, Goldberg AN. Upper airway assessment: radiographic and other imaging techniques[J]. Otolaryngol Clin North Am, 1998, 31(6): 931-968.
17 Schulze R, Heil U, Gross D, et al. Artefacts in CBCT: a review[J]. Dentomaxillofac Radiol, 2011, 40(5): 265-273.
18 Moss ML. The functional matrix hypothesis revisi-ted. 3. The genomic thesis[J]. Am J Orthod Dentofac Orthop, 1997, 112(3): 338-342.
19 傅民魁. 口腔正畸专科教程[M]. 北京: 人民卫生出版社, 2007: 68-71.
Fu MK. Orthodontic course[M]. Beijing: People’s Medical Publishing House, 2007: 68-71.
20 Shrestha B, Shrestha R, Lin TW, et al. Evaluation of maxillary sinus volume in different craniofacial patterns: a CBCT study[J]. Oral Radiol, 2021, 37(4): 647-652.
21 Okşayan R, Sökücü O, Yeşildal S. Evaluation of maxillary sinus volume and dimensions in different vertical face growth patterns: a study of cone-beam computed tomography[J]. Acta Odontol Scand, 2017, 75(5): 345-349.
22 Rani SU, Rao GV, Kumar DR, et al. Age and gender assessment through three-dimensional morphome-tric analysis of maxillary sinus using magnetic resonance imaging[J]. J Forensic Dent Sci, 2017, 9(1): 46.
23 Favato MN, Vidigal BC, Cosso MG, et al. Impact of human maxillary sinus volume on grafts dimensio-nal changes used in maxillary sinus augmentation: a multislice tomographic study[J]. Clin Oral Implants Res, 2015, 26(12): 1450-1455.
24 Daimaruya T, Takahashi I, Nagasaka H, et al. Effects of maxillary molar intrusion on the nasal floor and tooth root using the skeletal anchorage system in dogs[J]. Angle Orthod, 2003, 73(2): 158-166.
25 Heravi F, Bayani S, Madani AS, et al. Intrusion of supra-erupted molars using miniscrews: clinical success and root resorption[J]. Am J Orthod Dentofacial Orthop, 2011, 139(4 ): S170-S175.
26 Park JH, Tai K, Kanao A, et al. Space closure in the maxillary posterior area through the maxillary sinus[J]. Am J Orthod Dentofacial Orthop, 2014, 145(1): 95-102.
27 Chung KR, Kim YS, Linton JL, et al. The miniplate with tube for skeletal anchorage[J]. J Clin Orthod, 2002, 36(7): 407-412.
28 Junqueira RB, Souza-Nunes LA, Scalioni FAR, et al. Anatomical evaluation of the relationship between the maxillary posterior teeth and maxillary sinus[J]. Gen Dent, 2020, 68(1): 66-71.
29 Anandarajah S, Dudhia R, Sandham A, et al. Risk factors for small pharyngeal airway dimensions in preorthodontic children: a three-dimensional study[J]. Angle Orthod, 2017, 87(1): 138-146.
30 Nath M, Ahmed J, Ongole R, et al. CBCT analysis of pharyngeal airway volume and comparison of airway volume among patients with skeletal Class Ⅰ, Class Ⅱ, and Class Ⅲ malocclusion: a retrospective study[J]. Cranio, 2021, 39(5): 379-390.
31 Ucar FI, Uysal T. Comparision of orofacial airway dimensions in subject with different breathing pattern[J]. Prog Orthod, 2012, 13(3): 210-217.
32 Zhong Z, Tang ZH, Gao XM, et al. A comparison study of upper airway among different skeletal craniofacial patterns in nonsnoring Chinese children[J]. Angle Orthod, 2010, 80(2): 267-274.
33 de Freitas MR, Alcazar NM, Janson G, et al. Upper and lower pharyngeal airways in subjects with Class Ⅰ and Class Ⅱ malocclusions and different growth patterns[J]. Am J Orthod Dentofacial Orthop, 2006, 130(6): 742-745.
34 Silva NN, Lacerda RH, Silva AW, et al. Assessment of upper airways measurements in patients with mandibular skeletal Class Ⅱ malocclusion[J]. Dental Press J Orthod, 2015, 20(5): 86-93.
35 Donner MW, Bosma JF, Robertson DL. Anatomy and physiology of the pharynx[J]. Gastrointest Ra-diol, 1985, 10(3): 196-212.
36 Ricketts RM. Respiratory obstruction syndrome[J]. Am J Orthod, 1968, 54(7): 495-507.
37 Dunn GF, Green LJ, Cunat JJ. Relationships between variation of mandibular morphology and va-riation of nasopharyngeal airway size in monozygotic twins[J]. Angle Orthod, 1973, 43(2): 129-135.
38 Joseph AA, Elbaum J, Cisneros GJ, et al. A cephalometric comparative study of the soft tissue airway dimensions in persons with hyperdivergent and normodivergent facial patterns[J]. J Oral Maxillofac Surg, 1998, 56(2): 135-140.
39 Grauer D, Cevidanes LS, Styner MA, et al. Pharyngeal airway volume and shape from cone-beam computed tomography: relationship to facial morphology[J]. Am J Orthod Dentofacial Orthop, 2009, 136(6): 805-814.
40 Hui DS, Ko FW, Chu AS, et al. Cephalometric assessment of craniofacial morphology in Chinese patients with obstructive sleep apnoea[J]. Respir Med, 2003, 97(6): 640-646.
41 Yamaoka M, Furusawa K, Uematsu T, et al. Relationship of the hyoid bone and posterior surface of the tongue in prognathism and micrognathia[J]. J Oral Rehabil, 2003, 30(9): 914-920.
42 Fernandes P, Pinto J, Ustrell-Torrent J. Relationship between oro and nasopharynx permeability and the direction of facial growth[J]. Eur J Paediatr Dent, 2017, 18(1): 37-40.
43 Proffit WR, Fields HW, Nixon WL. Occlusal forces in normal- and long-face adults[J]. J Dent Res, 1983, 62(5): 566-570.
44 Ingervall B, Minder C. Correlation between maximum bite force and facial morphology in children[J]. Angle Orthod, 1997, 67(6): 415-424.
45 Braun S, Bantleon HP, Hnat WP, et al. A study of bite force, part 2: relationship to various cephalometric measurements[J]. Angle Orthod, 1995, 65(5): 373-377.
46 Moscarino S, Kötter F, Brandt M, et al. Influence of different surgical concepts for moderate skeletal Class Ⅱ and Ⅲ treatment on the nasopharyngeal airway space[J]. J Craniomaxillofac Surg, 2019, 47(10): 1489-1497.
[1] Yang Yunan,Liu Peng,Wang Hu,You Meng. Evaluation of maxillary sinusitis with cone beam computed tomography [J]. Int J Stomatol, 2023, 50(3): 302-307.
[2] Ye Zelin,Liu Lu,Long Hu,You Meng. Research progress on imaging evaluation and treatment of anterior dilacerated teeth [J]. Int J Stomatol, 2022, 49(2): 173-181.
[3] Liu Lijia,Mao Jing,Long Huan,Pu Yalong,Wang Jun. Research progress on two-dimensional and three-dimensional cephalometric automatic landmarking [J]. Int J Stomatol, 2022, 49(1): 100-108.
[4] Zhou Mengqi,Chen Xuepeng,Fu Baiping. Strategies for preventing alveolar-bone dehiscence and fenestration during orthodontic treatment [J]. Int J Stomatol, 2021, 48(5): 600-608.
[5] Shi Danni,Yang Xin,Wu Jianyong. Research progress of reference coordinate system for three-dimensional cephalometric based on cone beam computed tomography [J]. Int J Stomatol, 2021, 48(4): 398-404.
[6] Wu Chunlan,Tang Hua,Chen Jun. Alveolar bone morphology of anterior teeth areas in patients with high-angle skeletal Class Ⅱ open bite [J]. Int J Stomatol, 2021, 48(4): 426-432.
[7] Wang Lidong,Ma Wen,Fu Shuai,Zhang Changbin,Cui Qingying,Liang Yan,Li Ming. Research and accuracy of different methods of digital occlusal splint fabrication for orthognathic surgery [J]. Int J Stomatol, 2021, 48(2): 156-164.
[8] Wang Ben,Xu Zhezhen,Wei Xi. Application and progress of a digitalized minimally invasive technique in endodontics [J]. Int J Stomatol, 2021, 48(1): 110-118.
[9] Zhang Zihan,Xiong Xin,Wang Jun. Research status and application development of three-dimensional cephalometry [J]. Int J Stomatol, 2020, 47(6): 739-744.
[10] Tang Bei,Zhao Wenjun,Wang Hu,Zheng Guangning,You Meng. Inferior alveolar nerve injury due to apical overfilling: two cases reports [J]. Int J Stomatol, 2020, 47(3): 293-296.
[11] Zhang Tingting,Hu Changhong,Peng Yan,Zhou Wenqiao,Zhang Huicong,Liu Die. Analysis of upper lip profile features in 300 dentate subjects of different ages via three-dimensional measurement of cone beam computed tomography [J]. Int J Stomatol, 2020, 47(2): 182-188.
[12] Li Qi, Huang Shaohong. Cone beam computed tomography study on root and root canal morphology of mandibular second permanent molars in Guangfu population in Lingnan area [J]. Int J Stomatol, 2019, 46(6): 640-649.
[13] Chen Yu,Jiang Huan,Liu Nan,Lu Chenmeng,Tang Zhongyuan,Han Ruyu,Hu Min. Effects of orthodontic treatment on changes in upper airway and peripheral structure in patients with skeletal Class Ⅱ malocclusion [J]. Int J Stomatol, 2019, 46(5): 578-584.
[14] Liu Xiaohua, Wang Enbo. Application progress on cone beam computed tomography imaging localization in extraction of embedded supernumerary teeth in children [J]. Inter J Stomatol, 2018, 45(3): 295-300.
[15] Yin Yijia, Feng Jie, Luo Mengqi, Han Xianglong. Research progress on the correction of natural head position with three-dimensional stereo-photography [J]. Inter J Stomatol, 2018, 45(3): 301-306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .